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Abstract— Engaging deaf and hearing people in common
discussions requires interfaces to help them understand each
other, such as robot agents that translate spoken language into
Sign Language (SL) expressions and vice-versa. However, the
recognition and generation of signed sentences is a complex
task of high dimensionality that cannot be solved in sufficient
quality yet. Thus, it is necessary to develop new technologies
of improved performances. The sequence to sequence neural
network model, traditionally used for machine translation, is
adapted to the above two tasks by treating a SL sequence
as a multi-dimensional sentence. We defined an encoding of
the SL annotations and conducted experiments on the network
structure to define a most accurate translation model. This
study proves the network trainable and possibly applicable in
real-life with an extended dataset, which shall be tested for
deployment in virtual translation assistants in the following.

Index Terms— Deep Learning; sequence to sequence; Sign
Language recognition; Sign Language generation

I. INTRODUCTION

Hearing loss affects over 5% of the world population and
more than 1/3 of all people aged 65 years or above [1].
Deaf people use Sign Language (SL) to communicate with
each other, Japanese SL (JSL) is the native language of
60.000 people and is spoken by approximately 317.000
people [2]. However, there remains a lack of communication
tools to support interactions between hearing people and SL
speakers. The former usually are not proficient in SL and
have problems reading a conversation signed in usual speed,
even when having learned SL. SL native speakers on the
other hand have difficulties understanding written texts and
would benefit considerably from an information display in
their native or preferred language [3]. Thus, it is useful to
build a bidirectional system able both to translate signed
sentences to text for hearing people, and to generate signed
sentences from written or spoken text via a 3D avatar (Fig.1)
for deaf people.

However, SL is not a regular language: it does not
make use of the voice but of movements and multi-modal
content indications (fingers, hands, arms, body gestures,
facial expressions). Thus, translation between SL and another
language can not be tackled similarly to other Machine
Translation (MT), and common translation tasks like video
captioning [4] need to be adapted to improve accuracy and
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Fig. 1: Our avatar for JSL animation generated from Japanese
text.

reliability. Systems developed to recognize SL words or to
generate SL animations generally do not account for all
aspects of a signed sentence, such as facial expression,
natural signing speed, transitions between words and tem-
poral and spatial context information [5], what makes them
incomplete and hard to interpret. To represent the multi-
dimensional aspects of SL and solve the issues related to
its continuous movements, we investigate the use of deep
Machine Learning (ML) models, useful for many domains.
In concrete, we discuss the application feasibility of a deep
sequence to sequence (Seq2Seq) learning model on a corpus
of JSL sentence expressions, that could easily be adapted
to any SL. To the best of our knowledge, it is the first
time bidirectional SL translation is tackled with such a
network, and hence it is important to identify parameters
and strategies enabling model adaptation and improvement.
This supports the engineering of highly accurate and reliable
communication systems in the future, that both recognize and
generate new JSL sentences to visualize on a 3D avatar.

The paper is structured as follows. First, we review the
previous techniques employed for SL translation. Then, we
detail our available SL corpus (Sec. III), and the set-up of our
system (Sec. IV). We present the results of the experiments
we conduct on the system (Sec. V), and discuss them in
Sec. VI. Finally, we draw conclusions on the feasibility of
Sign Language translation with recurrent neural networks
and present possible future improvements (Sec. VII).

II. RELATED WORKS AND OBJECTIVES

A. Sign Language Communication Systems

Although systems that facilitate communication between
spoken and signed languages would improve engagement and
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integration of deaf people, technologies for the recognition
and generation of SL expressions lack behind the quality of
spoken language interfaces and of coarse full body activity
data activity recognition. One reason for this is that SL, as
a minority language, is subject to less research on related
aspects like linguistic knowledge. Besides, only few ML
corpora are publicly available for research given the visual
aspects of a signed utterance that impose the need for a
specialized data collection as well as expert knowledge for
annotation. As a result, it is still common for both SL
recognition (SLR) and SL synthesis (SLS) to use shallow
MT methods.

1) SLR: The most recent review of approaches for the
recognition of SL was published in 2005 [6]. In general, in-
troduced methods were based on well-established techniques
such as Hidden Markov Models (HMM), Principal Compo-
nent Analysis (PCA), random forest, nearest neighbours or
rule-based methods. Furthermore, most works focused only
on hand gestures captured with image, video, Kinect sensors
or PowerGloves and were trained to recognize single words
only [7], [8], [9]. This is an unnatural assumption considering
that SLs do not only consist of hand gestures but also face
and body movements and are commonly expressed in full
sentences. Therefore, to date, most methods could not be
applied in real translation interfaces.

Since then, only few deep neural networks were used
that aim to include all important aspects of a signed ex-
pression. Full body studies reach high accuracies on small
corpora: 91.7% accuracy for 20 words by segmentation
and automatic feature extraction with Convolutional Neural
Networks (CNN) [10], and 86% accuracy for 73 words by
automatic extraction of the most discriminative frames [11].
Most recent efforts to translate consecutive signs recognize
short sentence expressions in Chinese SL with conditional
random fields with 90% accuracy based on manually de-
signed features [12]. Transition modelling reaches 87.4% ac-
curacy [13], while methods inspired from speech recognition
achieve 33.4% error rate for a single signer dataset [14], and
CNN achieve 62.8% accuracy over 60 classes [15].

2) SLS: Signed expressions are synthesized by translating
textual sentences into gloss annotation sentences following
the SL grammar, and rendering them into an avatar. Sequence
generation is generally tackled in two main different ways.

One approach is to render the signs with kinematics
calculations based on their visual annotations such as in
Moemedi [16]. However, this method is of high compu-
tational complexity and resulting animations do not look
natural since each sign is exactly signed in the same way,
with the same starting and ending positions. Zhao et al. [17]
add specific information (location in space of the sign,
strength of the signed gesture, speed and flow of the sign)
to the annotated SL words to distinguish between similar
words. Moreover, they annotate pauses in the sentence, and
negations of words, question intonations, passive or active
voice of the words over certain of the annotated words since
the words themselves have similar hand-gestures with only
small variations to express these variations in their meanings.

Using inverse kinematics, they can generate gestures de-
pending on these annotations, and they deal with transitions
between words using Parallel Transition Networks (PaT-Net).

The second approach is to map the annotations to move-
ments stored in a database collection, consequently each sign
is signed similarly with identical starting and ending posi-
tions. For example, Suszczańska et al.[18] pass descriptions
of 600 SL words to an OpenGL application to generate a
signed sentence. Tokuda et al. [19] use a rule-based method,
searching the closest SL word in a dictionary from the input
Japanese word, and display this signed word. Here, it is
common to interpolate transitions between signs for more
naturalness. For example, Lu et al. [8] manually add control
codes such as pauses in between the annotated sentence,
and interpolate linearly the transitions between words. Ohki
et al. [20], [21] map words to collected PowerGloves data
input in the Computer Graphics program, and interpolate the
transitions between words for more naturalness.

However, as long as facial expressions and non manual
signs are not conveyed, such synthesized animations achieve
poor ratings among deaf individuals [22]. Research to add
facial variations on top of the manual signs is done by
rendering the avatar with manual movements and adding
eyebrow and head movements [23]. Similarly, Xu et al. [24]
constitute a dictionary of SL words but they add to the
hand gestures facial expressions to express the mood of the
sentence. Kacorri [25] generates facial animations with data-
driven models and shows that continuous profile models give
better results than previous methods, comparing them using
multivariate Dynamic Time Warping (DTW).

B. Intended improvements

Direct interaction of hearing and deaf individuals shows a
need for SL communication agents. In particular in situations
where professional translation services are not available, such
as internal company meetings, fast and accurate translation
of both spoken and signed statements is an important factor
for better accessibility of information and hence enhanced
inclusion of all associates. We adapt an approach able to
learn long-term dependencies of spoken languages, deep
Recurrent Neural Networks (RNNs) with Long-Short Term
Memory (LSTM) cells. Since MT methods are used to
generate and at the same time understand sequences, this
allows us to perform our double task with one identical
model, and to utilize full sentences to train a network that can
both recognize and generate SL utterances. These utterances
incorporate full body motion information as well as facial
expressions representing lexical and grammatical content of
JSL, while the gloss annotations are enhanced with additional
descriptive data.

For SLS, models trained on full sentences are expected to
improve the overall quality of a signing avatar animation
by intrinsically learning transitions between words, speed
and spatial and temporal dependencies in a natural way. For
SLR, the combination of multi-channel information (body,
face) could improve recognition accuracy within continuous
sentence utterances. Moreover, RNNs do not need temporal
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Fig. 2: Data recording set-up: 42 3D motion capture cameras
and a Microsoft Kinect v2.

segmentation and would hence save a lot of corpus annota-
tion work in the future, considering that it requires a large
amount of data to train on.

III. MACHINE LEARNING CORPUS

A. Description of the corpus

379 sentence structures were signed in 2 to 3 different
speeds (total of 812 sentences with a vocabulary of 195
words) by one fluent signer (Child of Deaf Adults) and
simultaneously recorded utilizing a markerless and a marker-
based motion capture systems [26]. To train the SLR, video
and depth data of the JSL sentences were acquired using
a Microsoft Kinect because this set-up is cheap, portable
and thus usable in the real world. For SLS, highly detailed
3D motion capture data of full body, face and finger were
acquired by a dense Vicon system of 42 cameras (Fig.2): the
point cloud data are high-dimensional and suitable inputs to
animate a 3D avatar.

Within this corpus, groups of 4 to 6 sentences with similar
vocabulary and grammar structures were composed to ensure
the repetitive occurrence of the word content. We use 2
sentences of each group for testing (244) and the rest for
training (568).

B. Data augmentation

JSL data augmentation is performed since the corpus is
small compared to MT tasks corpus. We investigate different
methods to multiply the data amount. In concrete, data
is 1) multiplied by 4 by adding noise between 0.25 and
1 standard deviation of the original data; 2) multiplied
by 2 by downsampling (skipping every second sample) or
upsampling (utilizing linear interpolation); 3) multiplied by
16 by combining all the techniques together.

IV. SYSTEM OVERVIEW - EXPERIMENTS

A. General system pipeline

We address the problem of translating JSL gloss annota-
tions to JSL motion sequences and vice-versa (Fig.3) as it is
generally done for SL generation. Indeed, translating directly
to Japanese or English language would lead to lower accura-
cies because we have few data and the networks would not be
able to learn such a complex task (recognition or generation
of single words, and their combination into a meaningful
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Fig. 3: Pipeline of the system. Left: Sign Language Synthesis
(SLS), right: Sign Language Recognition (SLR).

grammatically-correct spoken language sentence). We show
in Fig. 4 an example of signed sentence and its associated
representations along the translation process.

Annotated sentences and motion data are encoded into
sequences of fixed size vectors. Then, two separate Seq2Seq
models are trained for the two tasks, taking as input and
output the encoded annotations and normalized JSL motion
sentences. Network outputs are post-processed by removing
repeated output words.

B. Gloss annotations encoding

1) Previous efforts to annotate Sign Language: Several
annotation systems of Sign Language have been developed
in the past, with the aim of describing the SL words for
linguistic studies such as the HamNoSys [27] (Hamburg
Notation System for Sign Language).
We base our annotation on the definition of SignWriting
and its corresponding SignWriting Markup Language [28].
This representation considers that the words are composed
of several entities (hands, head, movement, body, dynamic)
and that each entity has a unique encoding (concatenation of
symbol number, variation, fill, rotation, category, group). It
enables to describe the signs very precisely, for example, it
contains information on which hand is signing the word, on
the orientation of the hand, and on where the hand is placed
in the signing space.
Moreover, Sign Language differs from spoken language
in the way degree variations are expressed, such as how
appreciation at different levels is shown. Zhao et al. [17]
call this aspect of SL inflectional morphology and encode
it using different numbers. We set up to transcribe these
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Fig. 4: Example of sentence types. From left to right, 1) the Japanese sentence and its English translation, 2) the gloss
annotation sentence (the words follow the JSL order), 3) the gloss annotation sentence with additional information, 4) the
corresponding encoded sentence, and 5) the JSL sentence.

characteristics in our encoding. Besides, to describe the
signing location into space, we base our model on the signing
space described by Zardoz (section 7.1 [29]): it divides
the signer space into multiple areas and reports the hand
positions into these areas.

2) The three encodings: We define three different
encodings. The simplest encoding 1) is a one-hot encoding
of all defined corpus words.
For the second encoding 2) (Fig. 5), words carrying related
meanings and signed similarly are considered identical,
but distinguishable with additional indications (adjective
intensity, question, genitive, passive voice, signing hand,
beginning and ending directions). Hence, this encoding is
identical to the first one with a smaller number of words,
to which are concatenated the one-hot encoded indications.
These additional indications can only be detected when
using facial and body movements information in addition to
the hand gestures. Thus, this encoding would increase the
interpretability of the generated models and the precision
of the recognized sentences. An example of such words is
”to receive” and ”to give”, which are signed with the same
gesture but in inverse direction (”rewinded”).
The third encoding 3) (Fig. 5) concatenates the first one
and one-hot encoded SignWriting [28] descriptions of the
gestures. As SignWriting words have variable lengths, one
word is encoded into several vectors.

C. Translation model

1) Model training process: After learning an encoding
for the corpora of the two languages, a network is trained. We
utilize a variation of RNN, the Seq2Seq model of Sutskever
et al. [30] for English-French translation, similar to the
encoder-decoder model of Cho et al. [31]. This network
consists of a first RNN or LSTM encoder network which
reads a variable-size input sentence and maps it to a fixed-
size vector (network internal state); and a second identical
decoder network conditioned on the first one, trained to
predict the translation of the sentence. For the SLR, an
additional layer performs a softmax function separately on
the different parts of the encodings (seen as classes), and
chooses the word with the higher probability each time.
The loss function employed is the cross entropy (SLR
scenario), respectively mean-squared error (MSE) or Soft
DTW loss [32] (SLS scenario).

To train and test the model, the input sequence is fed to
the first network and the second network then returns an
output. When training the network, this output is compared
to the expected one to compute the loss, which is back-
propagated to the two networks. To get an output from the
system, the input is passed -in reverse order as it was shown
to give higher accuracy [30]- through the first network whose
internal state is copied to the second network. Afterwards,
the second network is fed with a beginning of sentence
token, and it gives out one output. Depending on the mode
chosen, this output is fed back to the second network (”feed-
previous” mode (FP)) which outputs a second output, or the
expected output is fed to the second network (non ”feed-
previous” mode (nFP)) (Fig. 6). This process is repeated until
an end of sentence token appears in the output. To decode
the outputs, the most likely translation is found using a beam
search decoder, with beam size of 1.

2) Model details: In order to indicate the sentence sep-
aration, special tokens are added to the word corpus: the
beginning of sentence (BoS) and end of sentence (EoS)
tokens. Additionally, since the model needs fixed-size entries,
a padding token is used to complete sequences which are
too short. Lastly, we introduce an ”unknown” token used
to replace the least frequent words within the corpus. The
sentence size varies from 5 words to 25 words, and the
signed sequence from 100 steps to 400 steps. Therefore, we
also make use of several buckets in order to manage varying
sentence size and group the sequences into smaller groups
of similar length sentences.

D. Experiments: network training
The network is implemented on TensorFlow [33] and run

on one GPU. It is optimized using the gradient descent
optimizer.
According to Sutskever et al [30], training in the nFP mode is
faster, but networks trained with the FP mode are more robust
to errors in the outputs. Moreover, the best performances are
achieved with deep LSTMs (4 layers) rather than shallow
ones. Thus, we started training the network with a large
architecture size, but further experimented with different
variations of the network. Some of the tested parameters are
listed in Table I.

V. RESULTS

Generally, it is noted that reducing the corpus size does
not improve the accuracy, the network never recognizes the
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Fig. 5: Description of encodings (2) and (3). The numbers are the numbers of features used to encode each corresponding
gesture indications. Top: Description of the second encoding. Size: corpus size + 3 tokens + 29 specifications. Bottom:
Description of the third encoding. Size: corpus size + 3 tokens + 180 SW + 8 specifications

Type Values
Neural network architecture
Cell LSTM, GRU, RNN
Nb. of layers 1 to 5
Nb. of cells/layer 64 to 500
Nb. of buckets between 1 and 5
Training process tuning
Gradient clipping no or 5
Dropouts 0 to 0.4
L2-reg. 0.0001 to 0.1
Training process FP or nFP
Inputs and outputs treatment
Nb. total words 150 or 100 (frequency > 4 or 10)
Encoding 1), 2), 3)
PCA 100% (45 dim.) or 90% (≈ 37 dim.) of the variance

TABLE I: Experiment variables

”unknown” token which replaces many words. Whereas basic
RNN cells cannot learn the data dependencies, LSTM and
GRU cells are of better and similar performance.

A. Recognition task

The network suffers of overfitting which was decreased
by the applied data augmentation. Regularization reduces
both overfitting and accuracy. This suggests that the network
performance could increase with more data: overfitting would
decrease, larger networks could be used, so the accuracy
would raise. When using the best performing architecture
(namely 1 layer of 256 LSTM cells), encoding 3) has both
training and test accuracies slightly higher than the two word-
based encodings. The former one explicitly describes sign
specificities such as hand shapes and directional information,
that could support the network in weight learning to distin-
guish similar words. With the second encoding, the vari-
ational indications are not regularly accurately recognized.
Generally, shorter sentences are recognized with few errors
and only adjectives are confused, suggesting that the network
is able to learn the sentence structures (Fig.7 and Fig.8).
Longer sentences require more training epochs for similar

accuracies. When including resampled data, the decoded
sentences have repetitions of words and post processing is
necessary. In the decoded sentences, the rarest words are
less often recognized. The EoS token never appear, whereas
the word ”pt” (referential pointing gestures) is always found.
This is due to the unbalanced dataset: words do not have the
same frequency in the corpus and hence slow down and bias
the learning process. In JSL, the EoS token is less frequent
than the ”pt” word used as context reference in the middle
and end of a sentence. Consequently, the network mixes both
words.

B. Generation task

Since the system accuracy remained low when employing
the whole set of features (642 dimensions), lower dimension-
ality outputs were tested: 1) PCA selected data streams with
high variance (492 dimensions), 2) all data streams excluding
lower body and facial expressions (219 dimensions), 3)
features of one kinematic chain (right arm) (12 dimensions).
The accuracy decreases in the first 1500 epochs and then
remains constant without overfitting, indicating that using a
larger network would improve the accuracy. The beginning
of the generated sequences is correctly predicted (Fig.9).
However, the output positions stay identical after 200 time
steps (over ≈ 1000 total steps) and the correct trajectory
is not entirely followed. The network learns but lacks a
sufficient number of parameters to learn complete sentence
expressions. The FP mode does not enable any training.
Moreover, the soft DTW loss leads to better performances
than the MSE loss.

VI. DISCUSSION

A. SLR

For SLR, most papers are not interested in recognizing
continuous unsegmented data, but concatenations of sepa-
rated gestures. Since it is not the same task, it cannot be
used as a baseline. Recent papers however present methods
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Fig. 6: ”Feed-previous” (FP) and non ”feed-previous” (nFP)
training modes.

for continuous recognition with the Word Error Rate (WER)
evaluation metric -which is a more optimistic metric than our
accuracy measurement. Koller et al. [34] obtain 26.8% WER
and Camgoz et al [35] 40.7% WER on a hand gesture dataset.
We cannot compare directly the performances since the
datasets are different, ours taking into account the full-body
gestures. Our SLR system shows encouraging results with
a maximum accuracy of 53%, but to employ the translation
system in real life, it is required to achieve recognition rates
of more than 80%. Here, it should be noted that the applied
accuracy metric is not fully tuned to our task, and WER
would give higher performances. Currently our evaluation
simply compares the words in the target and the output
sentences at their specific location inside the sentence. Thus,
if one word is repeated twice in the output, all the following
words are shifted in the sentence and none of them are
accounted as correct even if they are. Our results have
slightly lower performances than recent works but they are
more portable on robotics platforms since we use Kinect data
which require less computing power (smaller dimensionality)
and these platforms usually have Kinect sensors and not
full-image cameras. Additionally, the recognized information
are more complete since it uses full-body gestures instead
of hands only, what enables to recognize more various
words whose differences are expressed in face and body

Fig. 7: SLR confusion matrix on training data. The axes
represent the different words in the corpus and the colour
their (mis)classification rate. Adjectives, ”pt” and padding
are confused, the network does not learn to distinguish
the different adjectives. The network might have learned
relationships between words (such as where adjectives are
employed) in a sentence.

Sentence1:pt1,mother,CL_2ppl,cafe,CL_P,tasty,banana,cake,eat,end 
epoch400:Sato,mother,pt3,pt3,CL_P,CL_P,pt3(x11) 
epoch800:pt1,mother,pt3,cafe,CL_P,surprised,cake,cake,eat,end,end,pt3(x3),pt2(x2) 
epoch1200:pt1,mother,CL_2ppl,cafe,CL_P,surprised,banana,cake,eat,end,pt(x6) 
 
Sentence2:pt1,mother,cafe,CL_P,tasty,cake,eat,end,speak(PV),pt3 
epoch400:pt1,mother,pt3,pt3,CL_P,CL_P,pt1,pt1,pt3(x9) 
epoch1200:pt1,mother,CL_2ppl,pt3,cafe,CL_P,strawberry,cake,eat,neg,pt3,neg,pt(x5) 
epoch2000:pt1,mother,pt3,cafe,CL_P,surprised,cake,eat,eat,pt3,pt3,end,pt3,movie(x3) 

Fig. 8: Recognition of two sentences (before post-processing)
during the training process. In blue the correctly recognized
words and in read the incorrect ones. More training epochs
are needed to learn the longer sentence, suggesting that more
training is also required for full sequence generation.

movements. Besides, the following additional changes could
help to reach this target number. To avoid overfitting to
improve recognition of complex sentence structures, our
main recommendation is to collect a larger dataset, while
making sure the word frequencies are balanced. This could
mean to include shorter sequences such as short frames or
simple word composita, to learn the rarest words. A better
way to represent and differentiate ”unknown” words should
also improve the accuracy. Furthermore, since PCA on the
Kinect data reduces overfitting, similarly a word embedding
as used in MT could reduce the dimensionality of the gloss
annotations and hence the need for data. Moreover, using
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Fig. 9: Comparison of the generated and expected collar
rotations over time along the Z, X, Y axes. Only the
beginning of the sequence is similar. The annotations on the
plot represent the targeted and generated rotations at different
times (start and end times, and after 200 units of time.)

a CNN to embed the inputs to the LSTM could learn a
meaningful representation of the data while reducing the
size of the feature space. For now, the system is usable
on simple sentences of common vocabulary. Recognition
of complex and rare sentences is not accurate enough yet
and a sentence language model could support the sentence
prediction. Finally, to help the recognition of the additional
indications reported in encoding 2), training the system on
separate words with different indications should also be
helpful.

B. SLS

As explained in the related work analysis, previous tech-
niques for SL generation simply concatenate pre-collected
movements to form sentences (with possibly superposition of
additional pre-saved facial expressions), what does not render
them in a natural way. No literature directly synthesizes the
SL gestures from the sentences and thus we do not have a
baseline to compare our system on. Our system, if higher
performances were obtained, would enable to synthesise
SL sentences with multiple variations represented in the
encodings, such as sign-speed changes depending on the
adjective intensity.

During SLS, only one to two low dimension words are
outputted. Thus, learning separate models for different parts
of the body (left, right arms, hands, facial expressions) and
merging them together is a solution to explore. Generating
facial expressions for example would give nuance indications
on the emotional state of the signer. Since dimensionality
reduction increased the performance, we assume that training
a larger network with more GPU memory would extend the
length of the outputs. Besides, the inclusion of an attention
model could help to learn longer term dependencies. In MT,
input and output sentences have relatively similar lengths
compared to our sequences of annotations which are approx-
imately ten times shorter than the target JSL sequences. We
suppose that this length gap is a limiting factor and suggest
helping the network to learn by duplicating the words in
the input sequence. Lastly, the network might benefit of
being pre-trained using single words before full sentence

training: easily generating individual words, it would focus
on understanding transitions and dependencies. This requires
(automatic) sentence segmentation or collection of new train-
ing samples.

VII. CONCLUSION

We introduced and evaluated a Seq2Seq learning model
for SL communication interfaces. Results indicate that the
model performs well on simple common sentences, and that
extensions would help it on longer translation tasks. These
results shall be further tested to achieve a complete com-
munication system including sign recognition and animation
creation as a final goal. This new tool would enable more
fluent conversations between hearing and deaf people, and
easier access to written and oral resources for SL native
speakers. Further training is necessary for real-life set-ups,
but the employed architecture shows promising performances
for two tasks that could not be handled simultaneously yet.
Besides, embedding this system on a human-like robotic
agent would enable to carry out the double task easily. On the
one hand, the system would only have to direct its visual sen-
sors to the current person speaking SL to process the gestural
speech and output a textual or spoken translation. On the
other hand, audio sensors could enable it to obtain a written
text of the currently spoken sentences (or textual sentences
could directly be sent to the system), and the neural network
model would process them and output the commands for
the robot to sign the translated sentences. Transferring from
positions inputted to the 3D avatar to commands for a robot
would only require a mapping between the avatar and the
robot coordinate referential frames, considering that certain
robotic systems are able to interpolate intermediate positions
and the torques applied to each joint of the robot between
two given positions in order to create full gestures. Real-
time use appears feasible since the delay to obtain outputs
from the neural network and post-process them is short (a
few seconds) but still too long for instant translation.
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