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Preface

Training machine learning (ML) models for natural language processing usually requires lots of data that is
often acquired through crowdsourcing. In crowdsourcing, crowd workers annotate data samples according to
one or more properties, such as the sentiment of a sentence, the violence of a video segment, the aesthetics
of an image, ... To ensure quality of the annotations, several workers annotate the same sample, and their
annotations are combined into one unique label using aggregation techniques such as majority voting.

When the property to be annotated by the workers is subjective, the workers’ annotations for one same
sample might differ, but all be valid. The way the annotations are aggregated can have an effect on the fairness
of the outputs of the trained model. For example only accounting for the majority vote leads to ignoring
the workers’ opinions which differ from the majority and consequently being discriminative towards certain
workers. Also, ML models are not always designed to account for individual opinions, for simplicity’s or
performance’s sake. Finally, to the best of our knowledge, no method exists to assess the fairness of a ML
algorithm predicting a subjective property. In this thesis we address such limitations by seeking an answer
to the following research question: how can targeted crowdsourcing be used to increase the fairness of ML
algorithms trained for subjective properties’ prediction?

We investigate how annotation aggregation via majority voting creates a dataset bias towards the majority
opinion, and how this dataset bias in combination with the current limits of ML models lead to an algorithmic
bias of the ML models trained with this dataset and unfairness in the model’s outputs. We assume that an ML
model able to return each annotation of each user is a fair model. We propose a new evaluation method of the
ML models’ fairness, and a methodology to highlight and mitigate potential unfairness based on the creation
of adapted training datasets and ML models. Although our work is applicable to any kind of label aggregation
for any data subject to multiple interpretations, we focus on the effects of the bias introduced by majority
voting for the task of predicting sentence toxicity.

Our results show that the fairness evaluation method that we create enables to identify unfair algorithms
and compare algorithmic fairness, and the final fairness metric is usable in the training process of ML models.
The experiments on the models point out that we can mitigate the biases resulting from majority voting and
increase the fairness towards the minority opinions. This is provided that the workers’ individual information
and each of their annotations are taken into account when training adapted models, rather than only relying
on the aggregated annotations, and that the dataset is resampled on criteria according to the favoured aspect
of fairness. We also highlight that more work needs to be done to develop crowdsourcing methods to collect
high-quality annotations of subjective properties, possibly at low-cost.

Agathe Balayn
Delft, September 2018
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1
Introduction

Machine Learning (ML) aims at predicting properties of new data by learning correlations between available
data samples and their known properties. For example, certain ML algorithms are built to classify radiol-
ogy images depending on whether they show a cancerous tumour, by learning the existing correlations from
available images and their labels (existence or not of a cancerous tumour). This is a traditional classification
task for Machine Learning, whose objective is well defined as it is clear that each image belongs to only one
possible class (with or without tumour). More and more ML algorithms are now used to address tasks whose
objectives are highly disputable because the predictions can not be verified by a human [80], [96]. For exam-
ple a ML algorithm made to predict whether an individual convicted of a crime might be a repeat offender
is disputable because the future prediction is not verifiable by a human since the future is not known. The
purpose of these predictions is to classify human beings in order to decide how these persons will be treated,
what potentially has a negative impact on humans’ lives [5]. Thus the accuracy of the predictions is important
not to harm someone wrongly.

Most research papers are considered as progress in their field when they report high accuracies of their
ML algorithms, whereas their outputs might be biased, unfair or discriminative towards certain categories of
population [52]. For example, the COMPAS system (Correctional Offender Management Profiling for Alter-
native Sanctions) made to predict a defendant’s risk of re-offending was proved to be discriminative because
it labels Black people twice more often than White people as potential reoffenders whereas it is not the case
in reality 1 [114]. It is claimed that it is unethical not to analyse the outputs’ errors and that systematic error
analysis would improve the understanding, the transparency and the accountability of the algorithms, in-
stead of simply reporting accuracy performance [52]. Therefore, investigating the outputs of Machine Learn-
ing algorithms made for predicting disputable properties of samples and their potential unfairness power is
becoming an increasingly important task.

In this thesis project, we identified a subset of the disputable tasks on which to focus on. This subset is the
group of tasks interested in classifying subjective properties of samples: properties for which there is no con-
sensus between the judgements of different people. We made this choice because we consider it is important
to tackle these tasks properly since we assume that low performance on these tasks translate into high risk of
harmful consequences.

ML models usually require a lot of data to be trained on and the methods to get training data often in-
volve crowdsourcing. "Crowdsourcing is the act of taking a job traditionally performed by a designated agent
(usually an employee) and outsourcing it to an undefined, generally large group of people in the form of an
open call" [61]. For example, crowdsourcing is used to answer queries unanswerable by computers (database
systems or search engines) answered by the crowd (CrowdDB framework [48]), to assess designs of visualiza-
tion [56], to create labels for natural language tasks [97], to perform user studies [68].

One of the main research questions for Crowdsourcing is: how to ensure that the annotations provided by
the annotators are correct? [8, 42] The quality of the annotations (often measured with the agreement rate)
depends on three factors: the expertise of the annotators, the quality of the samples to annotate, and the
way the task is presented. This may be because the annotators might not provide accurate annotations due

1https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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6 1. Introduction

to a lack of expertise or a lack of consideration for the task (spammers or annotators who make mistakes
from inattention). The task might not be described precisely enough and the samples to annotate might be
ambiguous or the property to annotate subjective, what leads the annotators to give different answers that
they all consider valid.

The annotation quality problem is resolved using methods directly implemented on the crowdsourcing
platform and post-processing methods of crowdsourcing treatment. For example, it is shown that in order
to create datasets for Machine Learning tasks using crowdsourcing, a large crowd of non-expert annotators
enables the training of classifiers with a higher accuracy than using unique annotations from experts. This
is provided that specific metrics are used to aggregate the annotations of multiple annotators into a unique
label [41], and when accounting for the annotators’ quality [97]. Research on crowdsourcing for quality as-
sessment experiments also shows similar results to laboratory experiments [67]. Several frameworks were
created to realize subjective multimedia evaluations and Quality of Experience evaluations [26, 60, 83, 84, 88]
with promising results in many domains such as video quality evaluation [47].

These methods all return one unique label per sample, which might not be representative of the anno-
tated property in cases where several interpretations of the sample are valid (our selected case of the clas-
sification of subjective properties); this might lead to unfairness since certain annotators’ judgements are
ignored. The annotators might express different but all valid judgements about the property for several rea-
sons: the task or the samples to annotate might be ambiguous leading to different interpretations from dif-
ferent annotators; or the property to annotate the sample on might be subjective (for example the annotators
might be asked to express their feelings, perception, opinion, aesthetic judgement about a sample), and be-
cause the annotators have different backgrounds, they have diverging points of view on the property of the
sample. Although the first two causes of diversity in judgements for a same sample might be eliminated by
refining the crowdsourcing task, the third cause (subjectivity of the property to annotate and related people’s
subjectivity) cannot, because it is intrinsic to the property of the data sample and to workers. Consequently
it is important to investigate the field of crowdsourcing for the annotation of subjective properties.

In this chapter, we identify the problem that we tackle in the thesis project, and its attached challenges.
We turn them into a set of research questions, and expose the contributions that we choose to make while
answering these questions.

1.1. Problem studied in the thesis: Machine Learning, Crowdsourcing, need
of data, biases and fairness

In this section, we explicit the three main limitations (summed up in Fig. 1.1) related to the fairness of ML
systems which aim at predicting subjective properties of samples.

Figure 1.1: The three limitations related to the fairness of current Machine Learning systems for the prediction of subjective properties.
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1.1.1. Limitations of current systems for the prediction of subjective properties
The prediction of subjective properties of samples is one of the disputable tasks that ML algorithms are ap-
plied to. In these applications, it is not always possible to consider that a unique label is enough to describe a
sample correctly because different people might express different but all valid judgements about the sample.

ML algorithms are not adapted to the task at stake because they are made to be trained on unique la-
bels and consequently can not deal with the subjectivity of the property, this possibly making them unfair
(limitation 1). These algorithms would merit being adapted to the use of multiple labels. For example cer-
tain systems are interested in classifying video segments into categories such as violent, non-violent [93],
and violence is perceived differently depending on the age, gender, etc. of the person watching a video, thus
the labels might differ depending on the judge of the video. Similarly sentiment of sentences is subjective,
sentences are interpreted differently depending on who reads them and consequently sentiment labels might
show diversity. Certain researchers are interested in evaluating the aesthetics of images [11] while humans are
shown to feel differently about a same image, and thus the collected judgements about a same image diverge.
For all these tasks, using one unique label (violent/non-violent, positive/negative, aesthetic/not aesthetic) to
describe the samples (video segment, sentence, image) at stake would not take into account the subjectivity
of the property to classify on (violence, sentiment, aesthetic) and the subjectivity of people.

In all these example applications, it is implicitly assumed that current ML models ignore certain judge-
ments because they only output one unique judgement, and thus they are considered unfair towards the
people who did not emit these judgements. However, this specific notion of algorithmic unfairness is not
studied in the literature: there is neither a definition of fairness for these models, nor an adapted evaluation
method of algorithmic fairness. This lack of research and understanding about algorithmic fairness do not
enable the systematic investigation of the fairness of ML systems (limitation 2).

In order to train these algorithms, crowdsourcing tasks are set-up, that collect annotations considered as
labels for the samples in the dataset, so that the complete dataset is used in the training process. The crowd-
sourcing techniques which aggregate the annotations into unique labels to increase their quality are not
valid for our specific domain of application, because all the valid perceptions available about each sample
should be taken into account but this information is lost during the aggregation, what leads to unfairness
towards the ignored perceptions (limitation 3). That is why it is important to investigate whether it is possible
to collect high-quality annotations via crowdsourcing without using traditional aggregation methods to filter
out low-quality annotations. For example, toxicity is a subjective property of sentences and consequently
if several annotators are asked to annotate the toxicity of sentences, they might have different perceptions
of the toxicity of some or all of the sentences. Examples of sentences and judgements about their toxicity
are given in Table 1.1. Aggregating the annotations into unique labels would conduct to consider only one
perception as valid, what is unfair to the other perceptions.

sample annotations label

Is there perhaps enough newsworthy information to make an article about the
Bundy family as a whole, that the various family members can be redirected to?
Or does that violate a guideline I’m not aware of?

non-toxic (100%) non-toxic

What shit u talk to me, communist rat? toxic (100%) toxic

"Please relate the ozone hole to increases in cancer, and provide figures. Oth-
erwise, this article will be biased toward the environmentalist anti-CFC point of
view instead of being neutral. Ed Poor"

toxic (20%), non-
toxic (80%)

non-toxic?

The article is true, the Israeli policies are killing Arab children.
toxic (50%), non-
toxic (50%)

?

Table 1.1: Example samples of a Machine Learning dataset for the task of predicting sentence toxicity. When a sentence has multiple
valid annotations about its toxicity, aggregating them into one unique label results in ignoring certain opinions.

1.1.2. Consequences from the combination of Machine Learning and Crowdsourcing
According to Dr. Yoshua Bengio, "Machine learning research is part of research on artificial intelligence,
seeking to provide knowledge to computers through data, observations and interacting with the world. That
acquired knowledge allows computers to correctly generalize to new settings."2. This definition highlights

2https://www.techemergence.com/what-is-machine-learning/

https://www.techemergence.com/what-is-machine-learning/
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the need for data -data samples and their corresponding labels- in the field of ML, need which is even more
important for Deep Learning algorithms. Consequently, the training of most Machine and Deep Learning
algorithms starts with a crowdsourcing phase to constitute large datasets. The pipeline is depicted in Fig. 1.2.

Figure 1.2: Usual Machine Learning pipeline combined with crowdsourcing. The training dataset is collected via crowdsourcing by
aggregating the annotations of multiple annotators into labels. The Machine Learning model is then trained on this dataset.

The three above-cited limitations of ML systems for the prediction of subjective properties, put together,
ca make certain systems highly unfair. The annotation aggregation creates a dataset bias towards one of the
perceptions of the property. The algorithms, not adapted to the task, and trained on these inappropriate
labels consequently exhibit an algorithmic bias usually towards the majority perception, resulting into al-
gorithmic unfairness towards the other perceptions, usually the perceptions of the minorities. For example,
in the third example of Table 1.1, 50% of the annotations have the label "toxic" while the other 50% are la-
belled "non-toxic". This might be because a part of the population agrees with the statement of the sentence
while the other part disagrees. If one unique label such as "toxic" was selected, the judgements of 50% of the
population would be ignored (dataset bias). The Machine Learning model which would be trained on this
sample would then be biased towards the first type of judgement (algorithmic bias) and its outputs would
ignore the judgements of 50% of the population (unfairness towards a subset of the population). Finally the
lack of proper definition and evaluation method of this algorithmic unfairness does not help researchers to
identify and tackle the issues related to unfairness when predicting subjective properties.

In order to make predictions of algorithms closer to reality and consequently more fair, we stress it is
necessary to investigate how to integrate the subjectivity of the property to annotate and the subjectivity of
the crowd in Crowdsourcing tasks, in further ML algorithms, and in the evaluation methods of the perfor-
mance of the systems. According to the above pipeline, Machine Learning and Crowdsourcing are currently
two separate fields of research that are used sequentially. However, we consider that for algorithms fulfilling
the disputable task of predicting subjective properties of samples, the two fields have to be brought together
in order to increase the fairness of the predictions. Since the labels in the training set can not be defined by
a simple aggregation of annotations anymore, we hypothesize that the multiple annotations should be di-
rectly used by adapted ML algorithms. We argue for models’ architectures enable to use multiple labels per
sample: a Machine Learning model able to return different annotations for a same sample depending on the
judgement of the person currently using the model would be fair toward each user.

1.2. Main research question, challenges, hypothesis and use-case
Several main challenges to investigate are brought in three main fields when making algorithms which clas-
sify subjective properties fairer:

• CH1: Dataset collection by crowdsourcing: How to ensure crowdsourced labels’ quality without aggre-
gating the annotations into unique labels?
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• CH2: Machine Learning model:

– CH2.1: How to adapt Machine Learning algorithms’ architecture to return multiple labels de-
pending on the user of the algorithms?

– CH2.2: How to build datasets to train these algorithms?

• CH3: Performance evaluation: How to measure the fairness of the algorithms quantitatively?

"Targeted crowdsourcing" is introduced by Ipeirotis et al. [63] as crowdsourcing where the crowd workers
with the needed expertise are identified during the task. Specifically, we call in the rest of the thesis "tar-
geted crowdsourcing" crowdsourcing tasks which take into account the available properties of the annotators’
background during annotation collection. We believe that these properties are important to make algorithms
fairer at classifying subjective properties since subjectivity is intrinsic to each annotator.

The main research question (RQ) that follows is:

RQ: How can targeted crowdsourcing be used to increase the fairness of Machine Learning algo-
rithms trained for subjective properties’ prediction?

The main hypothesis we test is the following:

H: Even if annotation aggregation enables to eliminate annotation mistakes and spammers, when
the annotations of subjective properties differ, but are all considered valid, there is also a loss of
information that leads to decrease of fairness in ML results. Therefore using disaggregated labels to
train adapted algorithms on adapted datasets should increase their fairness.

We could study different prediction tasks, as long as they involve subjective properties with several valid
interpretations over a unique sample. We chose the use-case of predicting toxicity of sentences for the fol-
lowing reasons.

• Toxicity is a subjective property which depends on people’s perception of a sentence characteristics
and context, as well as on people’s own subjectivity (mainly influenced by their background).

• Prediction of sentence toxicity is useful for several purposes such as to build well-behaved chatbots or
to filter offensive Web content since the use of hate speech over the Internet has increased with the
growth of the Internet. A short reflection about the ethical issues related to the automatic prediction of
sentence toxicity is proposed in Appendix D.

• No study has previously been performed to study the collection of toxicity annotations using crowd-
sourcing, nor to automatically predict toxicity depending on people’s subjectivity.

• On the contrary to other tasks like sentiment analysis or subjectivity annotation (determining whether
a snippet is subjective or not) [62], it is hard to define a category of people who are experts at toxicity
judgement, thus crowdsourcing appears as a suited way of collecting a toxicity dataset.

Therefore, detecting and understanding toxicity and its subjectivities is an interesting use case to apply our
experiments on the prediction of subjective properties using crowdsourcing and Machine Learning.

1.3. Research questions of the research project
In order to answer the main RQ, we divide it into the following research questions and their research sub-
questions, each one corresponding to a specific challenge cited previously. We explicit the methods employed
to answer each of the questions and the results we hope to find.

• RQ1: How can a dataset be built to train algorithms for the prediction of subjective properties?
This question aims at answering the first challenge.
First it is required to choose an existing dataset which contains subjectivity. The analysis of the psychol-
ogy literature about sentence toxicity shows that toxicity is a subjective property in theory and enables
to identify the major variables which influence the perception of sentence toxicity. This leads to the
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creation of a list of requirement to select the Computer Science dataset for the study of toxicity in prac-
tice. Experiments on the selected dataset (Jigsaw dataset) proves that it is adapted to study subjective
properties prediction.
Second, we study how to collect datasets containing subjectivities using crowdsourcing while ensur-
ing high-quality data and low-cost. A literature review of existing crowdsourcing methods compared
to the requirements of the selected task and dataset, and experimentations on the retained method
which does not aggregate annotations into unique label, show that applying different crowdsourcing
methods enables to filter out part of the invalid collected annotations, but that more work is needed to
identify the rest of the annotators’ mistakes. Experiments on automatic clustering of the data samples
open a possibility to refine for the grouping and evaluation of a reduced number of samples by selected
annotators to decrease the cost of the crowdsourcing task.

• RQ2: How to evaluate algorithmic fairness when predicting subjective properties?
This question aims at answering the third challenge.
A literature review focused on algorithmic fairness in ML shows that current definitions and evaluation
methods are not adapted to algorithms made to classify subjective properties. This conducts to pro-
pose a new definition which generalize the concepts mentioned in the literature, and to investigate new
evaluation methods. For that, we set-up a list of algorithms with different expected fairness-related be-
haviours and propose different ways to characterize and visualize their potential unfairness by cluster-
ing the dataset according to multiple criteria and evaluating the algorithms’ performance on each clus-
ter separately. We select the characterizations which enable to observe the expected fairness-related
behaviours and make several hypotheses to summarize these characterizations into unique fairness
measurements. We again select the ones which highlight the expected behaviours.

• RQ3: How to build and train algorithms whose outputs are fair when predicting subjective properties
of samples?
This questions aims at answering the second challenge.
A completely fair algorithm is assumed to be an algorithm which outputs accurately the perceptions
of the current judge of the samples. An extensive review of the literature which aims at classifying
toxic (or related) speeches is conducted to identify potential algorithms to adapt, and a search of ML
algorithms made to predict different outputs about one same sample depending on certain criteria is
done to find potential ways to adapt the outputs to the different crowd workers. Hypotheses are for-
mulated concerning the training processes and architectures of the models, as well as on resamplings
of the training dataset, in order to make their predictions fairer. They are evaluated by applying the
hypotheses to a default ML model and comparing the performance of the default model to this new
model using the previously defined fairness evaluation method. It is concluded that augmenting the
algorithms’ inputs using variables describing the users’ background information and resammpling the
training dataset according to the fairness criteria which we want to optimize enables to make the al-
gorithms fairer. However, the performance are not totally accurate and additional modifications of the
models should be made to increase the fairness even more.

1.4. Thesis contributions
In this thesis we set-up to create a methodology aimed at evaluating the fairness of the outputs of classifiers
for subjective properties, and make them fairer. The methodology tackles the metrics to evaluate fairness, as
well as fairness related to crowdsourced data and ML algorithms. It consists in three main steps: the dataset
creation phase, the algorithm design and training phase, the evaluation of the fairness of the predictions
phase. We bring five main contributions that we list here.

• CO1: The first contribution of the thesis is an extensive literature review to study the fairness of ML
algorithms trained for subjective properties prediction, with the use-case of sentence toxicity. We in-
vestigate existing literature on each of these sub-topics which enable to highlight current limitations,
as well as possible directions to improve the fairness of subjective properties classification algorithms
as well as their training data (study of crowdsourcing for subjective property annotations). It enables to
answer the first sub-questions of each research question (RQ).

• CO2: The second contribution answers the first research question (RQ1). It consists in a list of recom-
mendations on the collection and cleaning of a toxicity dataset for further training of ML algorithms.
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• CO3: The third contribution is an evaluation method to measure the fairness of ML algorithms made
to predict subjective properties on samples. This contribution is the answer to the second research
question (RQ2).

• CO4: The fourth contribution is a modification of current ML and Deep Learning algorithms’ archi-
tectures so that their fairness as defined in the second contribution is improved. This is the answer to
the third research question (RQ3).

• CO5: Finally, the last contribution which answers part of the third research question (RQ3) is a set of
dataset resampling methods to modify training sets and increase the fairness of the ML algorithms
which are trained on these sets.

The first contribution leads the reflection on the different aspects of the main RQ and enables to formulate
hypotheses to answer it. Contributions 2) and 5) tackle the targeted crowdsourcing aspect of our main RQ,
they enable to identify how to use crowdsourcing to create datasets to train fair Machine Learning algorithms
made to predict subjective properties of samples. Contribution 4) tackles the ML aspect of the RQ. Combining
contributions 2), 4) and 5) forms the main elements of the methodology to make the algorithms’ outputs
fairer, while contribution 3) enables to evaluate quantitatively algorithmic fairness so that future research to
improve the current methodology could be objectively compared to our proposition.

1.5. Thesis outline
The thesis is organized as follows. We first proceed to a literature review of the different fields concerned with
our research questions (psychology, Machine Learning, crowdsourcing and algorithms’ fairness mainly) in
order to answer the first sub-questions of each research question (RQ) (Chapter 2). Then we tackle the first
research question (RQ1): we show the validity of studying sentence toxicity to work on the automatic predic-
tion of subjective properties, and investigate the crowdsourcing processing steps to create datasets adapted
to train algorithms for subjective property prediction (Chapter 3). Afterwards, we focus on the problem of cre-
ating an algorithmic fairness’ evaluation method (Chapter 4). In the next chapter, we work on the creation of
Machine Learning algorithms to realize the automatic classification of subjective properties and we investi-
gate dataset resampling to improve the performance of these algorithms (Chapter 5). The fairness metric and
Machine Learning steps are entangled chronologically since we do not have a baseline for our task and thus
creating an adapted evaluation metric and testing it on adapted algorithms is an iterative process. Finally, we
discuss the overall results and give suggestions for future work (chapter 6).

Fig. 1.3 presents an overview of the thesis work and organization.

Figure 1.3: Overview of the thesis project.





2
Literature review

To tackle our main research question, we start by conducting a literature survey in order to investigate the
current state-of-the-art in the area of toxicity detection both in the psychology and Computer Science fields,
as well as in the areas of fairness of Machine and Deep Learning algorithms and crowdsourcing for subjective
tasks. It enables to answer the first sub-sub-question of each question, and it corresponds to contribution 1.

We begin by looking at how toxicity (RQ1) and its related topics are studied in the field of psychology. The
aim of this first part is double, it is 1) to verify that sentence toxicity is a subjective property and identify which
variables influence its perception, and 2) to understand what are the necessary elements a training dataset
for toxicity prediction should contain, and how to build such a dataset.

Next we are interested in the Machine Learning (RQ3) part of the work. On the one hand, we review the
existing Machine Learning approaches for toxicity prediction and the Machine Learning algorithms which
target prediction of subjective tasks in order to find ways to perform subjective toxicity prediction ; on the
other hand we study the methods used to create the datasets employed in these research in order to reuse or
create our own dataset (RQ1). Additionally, we investigate what are the evaluation metrics used to measure
the performances of these algorithms and the Machine Learning metrics aiming at evaluating algorithmic
fairness and algorithms’ discrimination power, with the purpose of defining an evaluation method adapted
to the prediction of the fairness of toxicity classification algorithms (RQ2).

Finally, we study how crowdsourcing is currently used to collect data related to subjective tasks, in order
to devise a methodology to collect annotations for our task, and evaluate the quality of our dataset (RQ1).

2.1. Definitions of toxicity-related speeches in the psychology literature
Several studies show the necessity of detecting hate speech on the Internet [105]. With the increasing use
of the Internet and websites where user comments are enabled, the quantity of user posted messages is too
large for human moderators alone to filter all of them. Thus, it becomes more and more important to be
able to detect hateful comments in an automatic way. However, each study do not tackle exactly the same
problem, or at least do not use the same words to describe it. This is why we first proceed to define the
different expressions found in the literature to qualify the different types of undesirable speeches found on
the Internet. Afterwards, we give a description of the variables which influence these speeches perception.
Finally, we examine how the studies were realized to point out these variables because it might give insights
to create a dataset for our experiments.

2.1.1. Term definition
Looking at the psychology and Computer Science literatures, we noticed that several words or expressions are
considered equivalent or are used without a precise definition, what results in a blurry distinction between
them. These words are "offensiveness", "aggression", "toxicity", "hateful" or "harmful" speeches and more
rarely "flaming". To refer to all of them, we name them undesirable speeches in the following sections.

From psychology, Archard [6] explains that offensive speech "offends the other in as much as it is directed
at some property of the other (a personal characteristic, belief, relationship, membership of a group, etc.)
and causes offence by the manner in which the other is represented. Some offensive speech can be hateful
but need not be." He investigates the wrongfulness of such speeches. The main key point he highlights is the
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wrong aim of these speeches which "attempt to denigrate, humiliate, diminish, dishonor, or disrespect the
other". He also makes a clear distinction between harmful and hurtful speeches, and consequently offen-
siveness: "Harmful acts need not be hurtful. I can damage your interests without you being aware of the fact.
Equally but conversely hurtful acts need not be harmful. I can occasion you intense but short-lived mental
distress without setting back your interests. Offense is thus hurtful but need not be harmful". In a similar way,
the difference between offensive speech and hate speech is explained in some Computer Science papers [36]
by the fact that hate speeches use "language that is used to express hatred towards a targeted group or is in-
tended to be derogatory, to humiliate, or to insult the members of the group.", while offensive language is not
always aiming at hurting people.

Finally, toxicity is differentiating from these previous concepts in the sense that it does not deal with the
ideas expressed in the speech, but only with how these ideas are communicated 1: the ideas could be hateful
but expressed in a clearly argumented way without using abusive language, and so would not be toxic.

Flaming is a concept directly related to the Web since it is defined only for online language. It refers to
"the use of offensive language such as swearing, insulting and providing hateful comments through an online
medium" [71]. When studying YouTube comments, flaming was found related to "political attack and racial
attack" with the use of "stereotypes, speculation, comparison, degrading comments, slander/defame, sedi-
tion, sarcasm, threaten, challenge, criticism, name-calling, and sexual harassments". Thus flaming seems to
be a larger group of speeches containing both offensive and hateful speeches.

In the Computer Science literature, these different concepts are sometimes blurry, that is why in the fol-
lowing section we proceed by looking at the psychology literature related to each of these concepts. Toxicity
and flaming perception study were not found, whereas studies related to offensiveness, harmful and hate
speech perception exist. Thus, we focus on these speeches.

2.1.2. Methodology to search for the papers
To research the psychology literature concerning the perception of toxicity-related speeches, we performed
a search on Google Scholar using the combination of the following keywords: "psychology", "speech", and
("offensiveness" or "hatefulness" or "hateful" or "harmful" or "harmfulness" or "aggressivity" or "toxicity"
or "cyberbullying"). We specifically selected the papers focusing on the study of the variables influencing
the perception of these speeches, and on the different characteristics of the speeches (mainly the different
targets). Then, we added the two keywords "perception" and "variable" which enabled to find more specific
papers. Finally, we searched whether there is existing literature which deals with these speeches on the Web
by adding "Web" and "Internet" to the initial query, but no results were found.

2.1.3. The different targets of hate speech
Several papers identify different classes of hate speech depending on the target of the speech.

In an analysis of hate speeches on the Internet [95], several different "hate" topics are identified: race,
religion, disability, sexual orientation, ethnicity, or gender, as well as behavioural and physical aspects that
are not necessarily crimes. Hate categories are defined: Race, Behaviour, Physical, Sexual orientation, Class,
Gender, Ethnicity, Disability, and Religion, (and other). In the paper analyzing hate speech on Instagram in In-
donesia [78], 6 classes are identified: race/ethnics, religion, ability, social status, moral, and appearance look.
Henry et al. [57] distinguish between 5 target groups: "groups representing different races (Black/African-
American, Latino(a), White/European-American, Asian/Asian-American, Arab/Arab-American), genders (male,
female), sexual orientations (gay people, straight people), mental status (highly intelligent people, mentally
ill people, mentally disabled people), religious affiliation (Jewish people), age (elderly people), and physical
status (obese people)".

2.1.4. The different variables influencing how toxicity-related speeches are judged
Theoretical papers, not specific to hate speech on the Internet, study what are the variables that influence
how hate and offensive speeches are received by different people. A summary of these different factors is
written in Table 2.1. The different groups of variables which influence sentence offensiveness perception are
summarized in Fig. 2.1.

1https://www.forbes.com/sites/kalevleetaru/2017/02/23/fighting-words-not-ideas-googles-new-ai-powered-

toxic-speech-filter-is-the-right-approach

https://www.forbes.com/sites/kalevleetaru/2017/02/23/fighting-words-not-ideas-googles-new-ai-powered-toxic-speech-filter-is-the-right-approach
https://www.forbes.com/sites/kalevleetaru/2017/02/23/fighting-words-not-ideas-googles-new-ai-powered-toxic-speech-filter-is-the-right-approach
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Figure 2.1: Summary of the variables influencing the assessment of sentence toxicity.

People’s internal characteristics
Guberman et al. [54] underline the "variation in individual perceptions of malicious content". In their study
attempting to rate aggressiveness of tweets, they show a difference depending on gender: women rate tweets
more often as aggressive than men. They additionally mention other possible factors influencing how ag-
gressive a sentence is perceived. They mention the tendency that some people have "to interpret ambiguous
stimuli as being intentionally aggressive" (named "individuals’ attributions of intent"), as well as the dispo-
sitions of people to become angry and anxious (named individuals’ angry and anxious dispositions) because
these dispositions make people more prone to judge sentences as aggressive. Downs et al. [40] find that two
main factors influence how harmful a hate speech is perceived: gender and liberalism inclination.

Cowan and al. [32, 33] made a detailed study on the different variables influencing the perceived offen-
siveness of hate speech. Their results are correlated with the other papers. They show that "the nature of
the observer - his or her ethnicity, gender, education, and age - plays a significant role". In [34], they make
a distinction between the perceived offensiveness of a speech and the perceived harmfulness. For example,
they show that ethnicity is a main factor in the perceived harmfulness but not offensiveness.

Several works specifically study racial hate speech. O’Dean et al. [79] find two different factors influencing
how hate speeches are perceived: the frequency to which people are subject to racial prejudice, and people’s
"beliefs about the appropriateness of expressing racial prejudice". Indeed, they show that racial hate speech is
judged more offensive by people less often subject to racial prejudice and people who strongly believe that
expressing racial prejudice is inappropriate. Williams et al. [109] find similar variables, and they additionally
highlight the difference of perception resulting from different ethnicities. The participants of their experi-
ments which evaluate perceived offensiveness of Internet memes are "People of Color" and "White" people.
They observe that people in this first category, when they were more often subject of racial "microaggres-
sions", perceive the memes as more offensive, whereas this phenomenon was not observed for the White
participants. Still focusing on racial hate speeches, Boeckmann et al. [14] show that they trigger different
kinds of emotional responses (fear, anger, sadness, outrage). Furthermore, participants with high member-
ship esteem reacted more strongly to threats to their group than low identifiers.

Other variables: speech context (speech target and author, ...) and speech characteristics Several studies
[32, 35, 57] are interested in understanding what are the characteristics of a sentence which influence how
offensive it is perceived. They look at which categories of hate, which targets are expressed in the sentence
and at the syntactic and semantic properties of the sentences (length of a sentence, usage of profanity or not,
...). Cowan et al. [32, 33] find that properties of the speech itself and its context influence how it is perceived.
Mainly, the targeted group of the speech, whether it is a public or private speech, and whether it received a
response are the factors influencing how the speech is perceived. Another study finds that the perceived
offensiveness is also influenced by how the direct target of the speech behaved and felt [34]. Boeckmann et
al. [14] also underline a difference between the targets of the speeches: a speech directed toward a person is
seen as more offensive than a speech toward the group of people a person belongs to. Moreover, other studies
investigate whether the author of the sentence is a variable which influences how the receiver of the sentence
or a third person evaluate the offensiveness of the sentence [35].

Besides, Sood et al. [98] study the use of profane words on different Yahoo Web communities (political or
not in the case of the paper). They underline that different communities not only use profanity with different
frequencies, but also in different ways or contexts and judge the words differently. For them, the perception
depends on the community and on the domain of the community.
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Variable
category

Variable Measure Paper

Internal
characteristic

gender question [54], [40], [32, 33]

Internal
characteristic

ethnicity question [32, 33], [109]

Internal
characteristic

education (level of educational attainment) question [32, 33]

Internal
characteristic

age question [32, 33]

Internal
characteristic

liberalism inclination
question 7-point
scale

[40]

Internal
characteristic

"individuals’ attributions of intent", individ-
uals’ angry and anxious dispositions

not investigated [54]

Internal
characteristic

frequency to which people are subject to
racial prejudice, people’s "beliefs about the
appropriateness of expressing racial preju-
dice"

question with
scale

[79], [109]

Internal
characteristic

membership esteem to the offended group
question with sev-
eral scales

[14]

Sent. charact. /
context

targeted group or person invented scenario [32, 33], [14], [57]

Sent. charact. category of hate speech info in dataset [57]

Sent. charact.
subtle or blatant prejudice, properties of the
sentences

in the dataset [37], [32]

Sent. context public or private speech invented scenario [32, 33]

Sent. context
speech received a response or not, what type
of response

invented scenario [32, 33], [34]

Sent. context author of the speech invented scenario [35]

Sent. context
Internet community in which the speech is
published

info in dataset [98]

Table 2.1: The factors influencing hate speech perception and/or offensive speech perception, ordered in 3 categories: internal belief
(people’s individual characteristics), sentence characteristics (how the sentence in itself is constructed), and sentence context (the sur-
roundings of the sentence).

2.1.5. Methodologies of the different studies
Computer Science study
Guberman et al. [54] investigate perceived violence of tweets, and give recommendations on the process of
tweet annotation. They had the tweets rated according to an adapted version of the Buss-Perry Aggression
Questionnaire (BPAQ). This questionnaire consists of several propositions that annotators rate according to
whether these are characteristics of the tweets or not. The workers on Mechanical Turk had to go over 14 gold
questions, and 12 correct answers were required to go to the real task. The authors found 30% disagreement
among the six workers, and explain it with different factors: the questionnaire might not be representative
of tweet violence, no context around the tweets is specified, it is hard to judge whether tweets are published
for promotion and whether they are written or targeting individuals or organizations, and the perception of
violence depends on people’s own beliefs which are different among annotators.

Psychology study
In the theoretical studies, the participants are presented with scenarios and asked to rate them according to
some propositions, the ratings being averaged in the end.

Cowan et al. [32] ask their participants to rate the scenarios according to the coherence with the following
proposition "the message is offensive" between 1 ("strongly disagree") to 7 ("strongly agree"). In the end
of the experiment, they ask the participants to give their background information. Similarly, in [34], they
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present scenarios constituted of sentences and possible responses, and they ask the participants to rate the
propositions "how offensive is the message?" between 1 ("not at all offensive) and 12 ("extremely offensive"),
"how serious is the offense" between 1 ("not at all serious") and 12 ("extremely serious"), "how harmed was
the receiver of the sentence" from 1 ("not at all harmed") to 12 ("extremely harmed"). Since the two first
questions had highly correlated responses, they were aggregated together.

O’Dean et al. [79] defined 10 propositions to rate between 1 ("disagree very strongly") and 9 ("agree very
strongly") and averaged the scores in order to evaluate the perceived offensiveness of the scenarios. In a same
way, Boeckmann et al. [14] measure how harmful a scenario is by asking participants to rate 6 propositions
on a 1 to 6 scale and averaged the ratings. To measure offensiveness, Williams et al. [109] ask the participants
to rate images along "how comfortable (reverse scored), acceptable (reverse scored), offensive, hurtful, and
annoying they were on a 7-point Likert scale ranging from 1 (Strongly Disagree) to 7 (Strongly Agree)", and
averaged the scores for each image.

Cunningham et al. [35] employ a different method. They propose 4 scenarios to participants and ask them
to select which one is the most offensive. The scenarios consist in asking the participants to imagine being
in a specific situation, such as assisting a men’s basketball game and select one out of four possible situations
such as "A Caucasian, female said: "Of course we lost. We played like a bunch of girls.""

2.1.6. Discussion
RQ 1. In this section, we looked at the psychology literature related to the different kind of toxicity-related
speeches. Considering that their definitions are blurry, we have to identify one clear type of speech to study
in case we need to build a dataset of toxic-related speech. The perception is influenced by three kinds of
variables: sentence characteristics, sentence context, and individual internal characteristics.

If sentence context is made clear and sentence characteristics is intrinsic to the data sample, the only
variables influencing sample perception are individuals’ internal characteristics. Depending on the studies,
different internal characteristics variables are presented to have influence on the offensiveness judgement.
Cowan et al. [32–34] highlight gender, age, ethnicity and education as the main influencing factors. We will
first focus on these factors which are the easiest to measure. In other studies, factors on the "psychologi-
cal" side are claimed important: liberalism sense, sense of belonging to a community, the frequency of being
subject to prejudice, the belief of appropriateness to express racial prejudice, angry and anxiousness dispo-
sitions, attribution of intent. These factors which are more complicated to measure will be left out, but could
be investigated in future work.

RQ1. To collect the data (perceptions of sentence toxicity), we would have to take into account how the
psychological studies are conducted. For each sample sentence, we should consider only one possible con-
text -which might have to be explained to the annotators- so that this factor does not influence the annota-
tions they give. If we could run several crowdsourcing experiments, we could compare the crowdsourcing
quality of experiments with more or less indications, for example where no context information is given.

RQ3. The perception of the toxicity-related speeches depends on many different variables, therefore
it seems a good approach to simplify as much as possible the prediction task (depending on the available
datasets) by restricting the properties of the speeches we investigate. Mainly, we can select one specific cate-
gory of speech (for example, racist or sexist speeches). Moreover, the psychology literature identifies different
target groups of hateful speeches. We can possibly use them to create different datasets or as additional in-
formation to help the Machine Learning classifiers learn which sentences are toxic in which toxic speech
category. We could additionally consider the sentence context fixed in the experiments. A dataset containing
sentences with similar characteristics could help the learning process since there would be fewer variations
to learn.



18 2. Literature review

2.2. Computational methods to detect toxic speech
A 2015 literature survey [75] lists scientific papers dealing with hatefulness detection on the Web, explain-
ing that they search for the papers with the keywords "online hate speech", "offensive language online",
cyber-bullying", "hateful language" because hate speech is not precisely defined in Computer Science. It
investigates the preprocessing techniques, the extracted features, the feature selection techniques and the
classification algorithms employed. However, it does not address the question of constituting a dataset and
its evaluation to train such algorithms, nor does it looks at the recently developed Deep Learning methods.
The most recent survey about the topic [94] dating from 2017 mentions these Deep Learning algorithms. It
mentions the amount of data the different papers use, but it does not specifically address how the data are
annotated - probably because this topic is not developed extensively in the papers. That is why this section
focuses on the existing algorithms but also on their evaluation and training datasets.

2.2.1. Methodology to search for the papers
To search for the Computer Science papers dealing with undesirable speeches detection, we used the differ-
ent queries "Machine Learning + [name of an undesirable speech] (+ "speech")", "Deep Learning + [name
of an undesirable speech] (+ "speech")", and "automatic prediction + [name of an undesirable speech]". We
selected all the papers which deal with datasets and with algorithms for undesirable speech prediction.

The MANDOLA project2 did not appear in the research results but it is worth mentioning because its aim
is to monitor and report hate speech on the Internet. Sadly, few detailed publications are available about the
project, but a general overview is given. It focuses on finding a definition of hate speech, collecting a Web
dataset annotated by experts to classify different hate speech categories, developing (Naive Bayes) classifiers
to automatically predict these classes 3, and finally visualizing the hate speech distribution on a map. Ethical
and legal reflections on the use and control of hate speech on the Web are also available.

2.2.2. Techniques used for toxicity detection
"Traditional" Machine Learning techniques
Until 2016, most of the techniques used for detection of hatefulness or insults were Machine Learning algo-
rithms, without Deep Learning. They performed feature extraction and selection, and then used classification
algorithms [75]. These methods are listed in Table 2.2, and compared in Table 2.3 and details on the datasets
employed are listed in Table 2.7.

The most used algorithm is Support Vector Machine. Sood et al. [99] use list of profane words and Support
Vector Machines, Chandasekharan et al [20] aggregate data from several Internet communities and classify
sentences from another community with Support Vector Machine. Chen et al. [25] classify into abusive, not
abusive and undecided (to take into account subjectivity of the judgments) and rate from 1 to 4 the harm-
fulness, by using Support Vector Machines. They do not get good results for the ratings. Davidson et al. [36]
classify between hate speech, offensive but not hate, and neither of the two, while Burnap et al. [19] simply
classify between hateful or not.
Warner et al. [107] define several categories of hate speech ("anti-semitic, anti-black, anti-Asian, anti-woman,
anti-muslim, anti-immigrant or other-hate") and suggest to use distinct classifiers for each of them. Indeed,
they explain that different categories of hate speech make use of different stereotypes with distinct lexical
fields, and therefore it should be easier for each classifier to learn one unique type of speech. Sood et al. [100]
in another paper explore insult detection using Support Vector Machines, they test different kinds of fea-
tures. Their experiments suggest that classifying insults in a general domain or training separate SVM for
different categories of comments (politics, news, entertainment, business, world) might not lead to much
difference in performance, but they also suggest that it might depend on which categories, certain employing
more specific language than others. Dinakar et al. [38] aim at detecting cyberbullying by classifying sentences
into three different topics (sexuality, race and culture and intelligence), they test different classifiers trained
on separate topic datasets and on a common dataset. They achieve better performances with topic-specific
classifiers.

Certain works only focus on using lists of profane words, what Rojas et al [89] augment with genomics
inspired techniques. Other works use language trees for detecting and filtering offensive comments [113], lo-
gistic regression [108] - classification based on text features and additional commenter features (gender, age,
location)-, [39] - classification of agressiveness based on word embedding-, regression [77] with the Vowpal

2http://mandola-project.eu/
3http://mandola-project.eu/m/filer_public/06/b9/06b92efd-cce2-4204-a2a9-5eb2c34912f7/mandola-d31.pdf

http://mandola-project.eu/
http://mandola-project.eu/m/filer_public/06/b9/06b92efd-cce2-4204-a2a9-5eb2c34912f7/mandola-d31.pdf
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Wabbit’s regression model4. Chen et al [24] test both the Naive Bayes classifier and Support Vector Machines.
Finally, Chen et al. [27] directly compute an offensiveness score from features extracted from sentences and
authors’ comment history. Chatzakou et al. [21] are interested in classifying Twitter users into bully, aggres-
sive or normal users, with tree-based classifiers.

Wulczyn et al. [111] use a Multi-Layer Perceptron (MLP) and Logistic Regression. They published the
only paper which addresses the problem of subjective judgments. They test two different models. A first one
where the annotations are aggregated in a single one-hot encoded label, and a second one where the labels
are represented as empirical distributions. They make the assumption that comments with high annotator
agreement are different than the ones with lower agreement rate, and therefore empirical distributions should
better represent the labels and help the algorithms learn. They get better performances with the Empirical
Density model than the single label model.

Papers Algorithms Features Task

[99]
Combination of
SVM and lists

bigrams and stems profanity or not

[20]
Bag of commu-
nities with NB,
SVM, LR

Bag of Words, n-grams(1,2,3), feature selection with ANOVA
F-values

abusive or not

[25] SVM
n-grams, syntactic and semantic features, context (reply to a
previous comment or new comment, news category, Twitter
or Facebook account, number of comments for the article)

abusive, not abusive, undecided,
severity between 1 and 4

[36]
LR, NB, decision
trees, random
forests, SVMs

n-gram (1,2,3), Penn Part-of-Speech tag, tweet quality, senti-
ment, syntactic, semantic, feature selection with logistic re-
gression

offensive, hate but not offensive,
neither

[19]

Bayesian LR,
random forest
decision tree,
SVM, ensemble
classifier

BoW n-grams(1,2,3), typed dependencies, feature selection
by LR

hate speech or not

[107] SVM template-based strategy to generate features anti-semitic or not

[100]
SVM, multi step
classification

BoW n-grams (1,2), stems

insult or not, in or not cate-
gories, target (third party or previ-
ous comment), malicious intent or
not

[38]
JRip rule-learner,
decision tree,
SVM

TF-IDF weighted unigrams, the Ortony lexicon of words de-
noting negative connation, a list of profane words and fre-
quently occurring POS bigram tags

labels (sexuality, race, intelli-
gence): multi-class, one/rest

[89] distance matrix characters of the sentence presence or not of obscenity

[113]
relation tree con-
struction

Part-of-Speech tags and typed dependency relation
identification of offensive sen-
tence sections

[108] LR
character n-grams, outside information about tweets and
author (gender)

hate speech or not (sexist, racist,
neither)

[39] LR Paragraph2vec embedding of comments and words hateful / clean comment

[77]
Vowpal Wabbit’s
regression model

character N-grams, token unigrams and bigram, Linguistic,
Syntactic features, embeddings

clean/abusive comments

[24] NB, SVM
BoW and n-grams with term frequency values, text structural
features - dim. reduction by document frequency reduction,
chi-square, SVD

harassment or not, cyberbullying
or not

[111]
LR, Multi-Layer
Perceptron

BoW with word or character level n-grams personal attack or not

Table 2.2: List of the Machine Learning methods for undesirable speech classification. LR (logistic regression), SVM (Support Vector
Machine), NB (Naive Bayes)

Deep Learning for toxicity detection
The most recent researches use Deep Learning for classification of the sentences, we list them in Table 2.4
with their corresponding performance metrics in Table 2.5, and the associated datasets in Table 2.8. They
usually train a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN), or its other vari-
ant Long-Short Term Memory neural network (LSTM), or combine several networks. All the following papers
working on the classification of different types of undesirable speeches using deep neural networks claim to

4http://hunch.net/ vw/
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Algo. cat. Algorithm details Performances Comparison

SVM SVM with lists [99]
P(0.90), R(0.20), maximal F1(0.32) and maximal
A (0.92)

List-based methods: P(0.64),
R(0.20), F1(0.30), A(0.91)

SVM [25]
R: 0.64 for abuse classification, 0.2 for severity
classification

list-based: 0.57

SVM [107] A(0.94), P(0.68), R(0.60), F1(0.63)

SVM [24]
average class A (= average R)(0.8), positive
R(0.61)

NB, baseline without data balanc-
ing and dim. reduction: 0.67, 0.34

SVM [38] A(0.667) and kappa statistic (0.653) for SVM
JRip rule-learner, decision tree:
lower performances

SVM and LR [36], P(0.91), R(0.90), F1(0.90), confusion matrix
NB, decision trees, random
forests: lower performances

SVM[19] P(0.89), R(0.69), F1(0.77)
multi step classification
[100]

P-R breakevenpoint(0.5009), maximum
F1(0.5038), maximum A(0.9082)

SVM: 0.3781, 0.3953, 0.8980

LR LR [108] F1(0.7393), P(0.7293), R(0.7774)

LR [39] AUC(0.8007)
Meth. using BoW with tf: 0.7889 or
tfidf: 0.6933

LR [111] AUC(96.24), Spearman rank correlation(66.68)
Vowpal Wabbit’s regression
model [77]

P(0.773), R(0.794), F1(0.783), AUC(0.9055) 0.8007 AUC with LR [39]

Bayesian LR [19] P(0.89), R(0.69), F1(0.77)

BoC
Bag of communities with
NB, SVM, LR [20]

P, R, A(0.9118) list-based: A(0.55), SVM: A(0.51)

ensemble ensemble classifier [19] P(0.89), R(0.69), F1(0.77)

dist. mat. distance matrix [89] P(0.80), R(0.93), hit rate(0.86)
Levenshtein edit distance 0.67%
hit rate

tree
random forest decision tree,
ensemble classifier [19]

P(0.89), R(0.66), F1(0.77)

relation tree construction
[113]

% of exact, excessive and insufficient filtering,
A(0.9094), speed

NN
Multi-Layer Perceptron
[111]

AUC(96.59), Spearman rank correlation(68.17)

Table 2.3: Comparison of the performances of the Machine Learning methods for undesirable speech classification. LR (logistic re-
gression), SVM (Support Vector Machine), NB (Naive Bayes). The evaluation metrics are the accuracy (A), precision (P), recall (R), the
F1-score (F1), the Area Under the Curve (AUC)

achieve better performances than traditional Machine Learning techniques.

Gao et al. [51] perform two-class classification by bootstrapping a Slur term Learner and an LSTM Deep
Learning algorithm. In another paper [50], they compare Logistic Regression, LSTM, and an ensemble model.
They introduce context (username and title of the commented news article), suggesting that the perceived
offensiveness depends on the context of the sentence. This way of integrating context could be adapted to
integrate the annotator belief profile to refine the prediction. Sax [92] also compared LSTM to traditional Ma-
chine Learning algorithms (mainly Logistic Regression), using only 4921 training samples (Kaggle dataset of
insulting/non-insulting sentences). He finds that LSTM gets higher F1-score but slightly lower AUC score for
a small architecture (adapted to the dataset).
Badjatiya et al. [9] classify between racist, sexist or neutral sentences. They test three different types of net-
works (CNN, LSTM, FastText) and achieve better accuracies than previous Machine Learning techniques.
Similarly, Chu et al. [29] test three different types of neural networks (RNN, CNN with character embedding,
CNN with word embedding) to classify whether a Wikipedia comment is an attack or not. They achieve higher
performances than linear regression and multi-layer perceptron (MLP).
Gamback et al. [49] use CNN to classify sentences between racist, sexist, both or neither. Similarly, Pavlopou-
los et al. [81] use RNN and compare with CNN.
Finally, Zhang et al. [119] combine both CNN and Gated Recurrent Unit (GRU) recurrent neural network. They
evaluate their architecture on seven different datasets, comparing the performances with baseline models
(SVM and CNN). They find out that their model obtains a F1-score higher than the other algorithms on six of
the seven datasets.

The results of all these studies show that it is feasible to use Deep Learning to classify hate speeches, and
they suggest that it might be more accurate than using "traditional" Machine Learning algorithms.
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Papers Algorithms Features Task

[51]
Co-learning of Slur term learner
and LSTM

Word2vec embeddings of the sen-
tences

hateful or not

[50]
bi-LSTM with attention mecha-
nism and with context, ensemble
model (LSTM, LR)

word-level and character-level n-
gram features, lexicon derived fea-
tures, emotion lexicon feature

hateful or not

[9]
CNN, LSTM, FastText as networks,
and as word embeddings for clas-
sifiers

word embeddings with either ran-
dom embeddings or GloVe em-
beddings

racist, sexist, nei-
ther

[29] LSTM, CNN
GLoVe word embedding,
character-level embedding

attack or not

[49] CNN
word embeddings with Word2vec
and random vectors, n-grams

racism, sexism,
both, neither

[81]
GRU RNN with and without atten-
tion mechanism, CNN

Word2vec and GLOVE word em-
bedding

reject or accept a
user comment

[119] CNN+GRU Word2Vec
racism, sex-
ism, neutral /
hate,non-hate

Table 2.4: List of Deep Learning methods for undesirable speech classification. LR (logistic regression), SVM (Support Vector Machine),
NB (Naive Bayes)

Cat. Algorithms Performances Comparison

LSTM
Co-learning of Slur term learner
and LSTM [51]

P(0.422), R(0.580), F1(0.489)
LR(P:0.088, R:0.328, F1:0.139), LSTM
(P:0.791, R:0.132, F1:0.228)

bi-LSTM with attention mecha-
nism and with context [50]

A(0.766), P(0.614), R(0.499),
F1(0.548), AUC(0.760)

LR(A:0.750, P:0.572, R:0.516, F1:0.542,
AUC:0.778)

ensemble model (LSTM, LR) [50]
A(0.779), P(0.650), R(0.496),
F1(0.560), AUC(0.804)

see above

LSTM+Random Embed-
ding+GBDT [9]

P(0.930), R(0.930), F1(0.930)

char n-grams, BoW, tf-idf with LR, Ran-
dom Forest, SVM, Gradient Boosted
Decision Trees (P:0.816, R:0.816,
F1:0.816)

LSTM [29] F1(0.70), A(0.94)
LR, feed-forward neural network:
(F1:0.54, A:0.91)

GRU RNN with and without atten-
tion mechanism [81]

AUC(80.41) with majority labels,
Spearman correlation with human
probabilistic gold labels (52.51)

word-list(AUC:64.19, Sp:24.33); [111]
method(AUC:75.67, Sp:43.80)

CNN word2vec+CNN [49] P(0.8566), R(0.7214), F1(0.7829)
LR with character n-grams(P:0.7287,
R:0.7775, F1:0.7389)

CNN+GloVe [9] P(0.839), R(0.840), F1(0.839) see above
CNN with character embeddings
[29]

F1(0.73), A(0.94) see above

CNN [81]
AUC with majority labels(76.03),
Spearman correlation with human
probabilistic gold labels (42.88)

see above

FastText+Random Embed-
ding+GBDT [9]

P(0.886), R(0.887), F1(0.886) see above

Combination CNN + GRU [119] F1(0.94) SVM(0.89), CNN(0.90)

Table 2.5: Comparison of Deep Learning methods for undesirable speech classification. LR (logistic regression), SVM (Support Vector
Machine), NB (Naive Bayes)
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Evaluation of the algorithms
To evaluate and compare the algorithms, the labels collected by crowdsourcing are considered as ground
truth. The datasets are separated into a training and a test set. The algorithms are trained on this first subset
and tested on the second one. Usually, the papers measure accuracy, precision and recall of the prediction
results (see Tables 2.3, 2.5).

Limitations of current techniques
We saw in the previous section 2.1 that three types of variables influence how hate speech is perceived (sen-
tence characteristics, context, and people’s background). In all these studies, a unique label per sentence is
taken into account, which is predicted based on the extracted sentence characteristics. Additionally to the
sentence features, research is done to judge whether a sentence is offensive based on who wrote the sentence
and in which context. We can consider here that the two first variables of the theoretical studies are taken
into account. However, no research is done to predict how people perceive the sentence depending on their
background, beliefs, using people additional context besides the sentence context.

This is a simplification which would merit to be addressed. In this recent survey [94] on hate speech
detection listing the employed methods, not taking into account people’s beliefs is highlighted as one main
limitation of current research: "Unlike other tasks in NLP, hate speech may have strong cultural implications,
that is, depending on one’s particular cultural background, an utterance may be perceived as offensive or
not". Therefore, addressing the subjectiveness of perceived offensiveness of sentences on the Web is new and
a useful task.
Additionally, Montoyo et al. [76], in their literature survey on text sentiment analysis and subjectivity, high-
light an important limitation of current studies: they mention that sentiment and subjectivity depend on
social and cultural aspects, but neither the writer nor the reader interpretations and personal backgrounds
are considered in current studies. They also mention that depending on the news source "(i.e. in terms of
bias, reputation, trust)", the sentiment perception of the reader might be different, within a same and differ-
ent countries and cultures.

2.2.3. Dataset gathering methods
The dataset specifications for the previously cited papers are listed in Tables 2.7, 2.8.

Available datasets
The following Table 2.6 lists datasets which were made public by their authors. Most of the available datasets
are too small to train Deep Learning algorithms. However, a few of them should be large enough, and could
also be aggregated together. We could also use resampling methods such as SMOTE [23] to artificially up-
sample the data and obtain larger and more balanced datasets.

Data collection
Most of the datasets are constituted of data scraped on websites (Youtube video comments, Twitter posts and
their comments, Wikipedia article comments, news article comments, question-answering forums). Then,
these data are annotated using crowdsourcing.
Two different methods are used. In some papers, all comments/QA are collected. In other papers, a filter
is used to only collect data which contain specific words (list of words usually found in hate speeches), and
other random data are collected to constitute the "false" class of the dataset. The data are then annotated to
precisely divide them into two classes. The problem which can be encountered here is a problem of unbal-
anced dataset: usually, more negative classes than positive classes are collected. This issue of the unbalanced
dataset will have to be addressed carefully in our experiments. Certain papers perform data augmentation
simply by duplicating some samples of the positive class to solve the issue.

Data annotation
The data are annotated by a few selected people (students of professors at university) or by crowdsourcing
on crowdsourcing platforms, mainly Mechanical Turk or Crowdflower. For example, Sood et al. [100] collect
comments from Yahoo! Buzz and have them annotated using MechanicalTurk. In all the papers, non-expert
workers are asked to annotate the samples.

To label the data, majority voting is usually used to resolve the disparity between annotators opinion. For
example, Reynolds et al. [87] ask three annotators to label the data and classify a label as positive if at least
two of the three annotations are positive. In some cases, a consensus threshold is decided like in [100], and
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Provenance Source Dataset size Labels

[36] Twitter

24802 tweets (and the num-
ber of annotations for each
tweet and category - 3 or
more)

hate, offensive but not hate, none
of the two

Kaggle competitiona 3947 sentences neutral, insulting

Yahoo [77]
Yahoo finance, Ya-
hoo news

759402 finance, 1390774
news

neutral, abusive (further classi-
fied into hate speech, profanity,
derogatory language)

[108] Twitter 16914 racist, sexist, neutral

[112], [87], [73]
684 sentences from the Web,
13652 posts (question an-
swering), 626 tweets

cyberbullying or not

[50] FoxNews comments 1528 hateful, not hateful
[81] Greek news website 1.6M aggressive, not aggressive

Kaggle competition
2b

Wikipedia com-
ments

95851 sentences, 95851 la-
bels

binary labels: toxic, severe toxic,
obscene, threat, insult, identity
hate

[111]c same data as
Kaggle competit. 2

Wikipedia com-
ments d

between 100k and 160k
samples, 1598289 judg-
ments ≈ 10 per sample e

not/personal attack; not/toxic
with score J−2;2K. Binary labels
with each annotator and per-
sonal background (gender, first
language, age group, education)

[119] Twitter
2435 tweets (414 hate, 2021
non-hate)

hate/non-hate for tweets about
Muslims and refugees

ahttps://www.kaggle.com/c/detecting-insults-in-social-commentary/data
bhttps://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
chttps://meta.wikimedia.org/wiki/Research:Detox/Data_Release
dhttps://conversationai.github.io/
ehttps://figshare.com/articles/Wikipedia_Talk_Labels_Toxicity/4563973

Table 2.6: Summary of available datasets

only the labels which reach a higher value than the threshold are kept in the dataset. They had minimum
three annotators per sample, and only kept labels (6009) when there was a consensus higher than 60%.

Chen et al. [25] study the agreement of judgments, they highlight the low agreement even for only the 3
categories (abusive, not abusive, undecided). That supports the idea that the labels should be "parametrized"
by people "beliefs". In [77], a short comparison of labels given by trained annotators and by crowdsourcing
suggests that annotations by crowd workers have a lower quality. Hence the use of user modeling (expertise
model) to choose which worker to annotate which sample.

Questions asked for the annotation
Usually, simply a yes/no question is ask. Reynolds et al. [87] ask "1) Does this post contain cyberbullying (Yes
or No)?". They additionally asked "2) On a scale of 1 (mild) to 10 (severe) how bad is the cyberbullying in this
post (enter 0 for no cyberbullying)? 3) What words or phrases in the post(s) are indicative of the cyberbullying
(enter n/a for no cyberbullying)? 4) Please enter any additional information you would like to share about
this post.", to collect data for future research but have not exploited them yet. Similarly, Burnap et al. [19] ask
the question "is this text offensive or antagonistic in terms of race, ethnicity or religion?" yes, no, undecided.

Sood et al. [99] work on profanity detection and after a pilot study, they define their crowdsourcing ques-
tion as follows: "Does this message contain any content you would describe as ’profanity?’ (including profan-
ity that is disguised or modified such as @ss, s***, and biatch) (Yes/No)". They conducted a pilot study [100] to
identify how to formulate the questions for annotation. They say that asking to rate comments on a valence
scale is too difficult and vague for the annotators. They annotate the use of profanity, insults, and the target of
the insult. Gamback et al. [49] also ran several crowdsourcing tests to set up their crowdsourcing questions,

https://www.kaggle.com/c/detecting-insults-in-social-commentary/data
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://meta.wikimedia.org/wiki/Research:Detox/Data_Release
https://conversationai.github.io/
https://figshare.com/articles/Wikipedia_Talk_Labels_Toxicity/4563973
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and chose the question with the highest inter-annotator agreement. The final question is "Does the comment
contain a personal attack or harassment? Targeted at the recipient of the message (i.e. you suck). Targeted at
a third party (i.e. Bob sucks). Being reported or quoted (i.e. Bob said Henri sucks). Another kind of attack or
harassment. This is not an attack or harassment."

Chen et al. [25] ask "Is the comment abusive or not?" with answers yes/no/undecided. If a comment is
said to be abusive, it is asked to rate it on a scale from 1 to 4 in which 1 is very slightly abusive and 4 is very
strongly abusive. Disagreement between workers is explained by several facts: the workers make mistakes or
spam, or the samples are ambiguous. After removing the low-quality workers, [25] highlights the subjectivity
of the task by explaining that less than 40% of the samples got total agreement between the annotators. In-
terestingly, non-abusive comments have 41% of unanimous labels while abusive comments only have 27% of
unanimous labels, what suggests that subjectivity is even more important in the abusive content.

Waseem et al. [108] give a precise definition of offensive comments following several criteria: "A tweet is
offensive if it 1) uses a sexist or racial slur. 2) attacks a minority. 3) seeks to silence a minority. 4) criticizes a
minority (without a well-founded argument). 5) promotes, but does not directly use, hate speech or violent
crime. 6) criticizes a minority and uses a straw man argument. 7) blatantly misrepresents truth or seeks to dis-
tort views on a minority with unfounded claims. 8) shows support of problematic hashtags. E.g. “#BanIslam”,
“#whoriental”, “#whitegenocide” 9) negatively stereotypes a minority. 10) defends xenophobia or sexism. 11)
contains a screen name that is offensive, as per the previous criteria, the tweet is ambiguous (at best), and the
tweet is on a topic that satisfies any of the above criteria." They say that potential disagreements come from
people’s subjectivity and the lack of context surrounding the tweets making people not able to define whether
the message is hateful or not. Gao et al. [51] also give a detailed description of offensiveness in their crowd-
sourcing task: "tweets that explicitly or implicitly propagate stereotypes targeting a specific group whether it
is the initial expression or a meta-expression discussing the hate speech itself". Similarly, in [50] they define
hate speech as "the language which explicitly or implicitly threatens or demeans a person or a group based
upon a facet of their identity such as gender, ethnicity, or sexual orientation".

2.2.4. Discussion
In this section, we were interested in the current automatic prediction algorithms used for classification of
toxicity-related speeches and the creation of datasets to fulfil this task.

RQ3. Related to the prediction of toxicity-related speeches, the studies use different datasets and do not
always use the same performance metrics. Therefore, it is not easy to compare the algorithms performance.
In Machine Learning, several algorithms are always used: Logistic Regression, Support Vector Machine and
Multi-Layer Perceptron. For Deep Learning, it might be necessary to test using both CNN and RNN neural
networks for the experiments.

RQ1. Considering the collection and annotation of the dataset, there are already datasets available, re-
lated to undesirable speeches. However, in all these datasets, there is no mention of the subjectivity of the
task (sentence being undesired for one person but not for another), except in [111]. Thus, the datasets could
be used as samples which would have to be annotated by the crowd to have an idea of how subjective the
data are, the current labels could serve as "ground truth" labels to investigate how several workers opinion
differs from the majority opinion.
Based on [25], two different tasks could be addressed. The first one is to classify sentences as undesirable, not
undesirable and undecided based on people’s beliefs. The second task - which might be more complex since
the disagreement between people is probably higher - is to predict the undesirability rating (from 1 to 4) that
people would attribute to the sentences based on their beliefs.
All the studies identify labels by asking only one question per sample. However, the psychological studies
used several questions and aggregated their results to determine whether a sentence is offensive or not. It
might be useful to investigate whether the answer to one question and the aggregation of several judgements
give similar results, or whether the algorithms learn better with one or the other method.
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Table 2.8: Dataset gathering in papers for undesirable speech detection using Deep Learning
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2.3. Machine Learning and Deep Learning for subjective tasks
Few research is performed to take into account the subjectivity of samples in prediction tasks, whereas it is
an important issue since subjective data can not always be described with one unique label. Instead of con-
sidering unique ground truth labels for subjective NLP tasks (what would not be representative of the reality),
it is suggested to consider several labels as acceptable for each sentence [2]. This new approach to datasets
creation for Machine Learning algorithms training is presented as an approach which merits attention [2].
We investigate the current research related to it.

2.3.1. Methodology to search for the papers
To search for algorithms related to subjective data prediction or to predictions adapted to different condi-
tions, we used two kinds of searches. Using the keyword "subjective" with different algorithm names returns
algorithms which classify speeches between subjective or not, or which classify the sentiment of speeches;
but they do not investigate the different interpretations of one speech. Thus, we used more specific queries by
adding "user model", "user modelling" to the initial queries, and also "chatbot" or "conversation" because the
chatbot field has literature on response adaptation. We selected all the Deep Learning and Machine Learning
papers which integrate some kind of modelling of one external condition into the training process.

2.3.2. Machine Learning and subjective tasks
Beigman et al. [10] consider that there are "easy" and "hard" to label instances. They suggest that Machine
Learning classifiers should be trained on the easily annotated samples so that at least these samples are well
predicted. Similarly, the subjectivity of the samples can be considered as the variance over the annotations
of each sample, and only the algorithms are reported to have higher performances when trained on the less
subjective data [110]. Moreover, it was shown that training algorithms with soft labels corresponding to the
annotators agreement over the sample label has slightly higher performances than training with all the data,
and filtering the samples with the lowest agreement rates enables to train algorithms with higher perfor-
mances than when using soft-labels [64]. In all these set-ups however, the different opinions on the samples
are "ignored".

Alonso et al. [3] relax this assumption by considering that, for each sample a ground truth label exists,
but for the samples where annotators do not agree with it, the algorithms are "allowed" to make errors (if
these errors are the same as human errors). When training the Machine Learning algorithm, they use a cost-
sensitive loss function which takes into account these possible human errors.

Finally, Reidsma et al. [85, 86] differentiate between annotation tasks of manifest content (directly observ-
able) and of "projective latent content" (the annotations depend on the annotators’ mental conception of the
samples and the possible categories). They explain that the latter tasks exhibit higher disagreement rate since
the annotations rely on the subjective interpretation of the sample by each annotator, but do not try to re-
solve this disagreement. To keep the subjectivity present in Machine Learning algorithms, they define two
different architectures and training procedures. 1) They propose to train algorithms solely on the data which
have a high-agreement rate. 2) Or they train one classifier per annotator and use an additional voting clas-
sifier which returns an output only when the annotator-specific classifiers agree. Their aim is to investigate
relations between the voting classifier decisions and the annotators disagreement. Their setup was tested for
datasets consisting of only three annotators contrary to us who have around 3000 annotators. We differ from
this study because we want to output predictions tuned to each person, and since we have a large number of
annotators with differing numbers of annotations, it is not feasible to learn one classifier per annotator.

2.3.3. Deep Learning models integrating subjectivity into their predictions
We did not find literature on Deep Learning where each annotation in the dataset would be used instead of
using labels resulting from annotation aggregation.

Deep Learning architectures integrating user modelling
There are some research interested in adapting the models outputs to each user specifically.

Liu et al. [72] investigate user modelling for response ranking in chatbots. This paper proposes a new
method to build and integrate the user profile into neural networks. As they present, related works which
perform user modelling usually take the conversation histories to infer implicit features about the users.
However, we are interested in using explicit features that psychology literature mentions, thus we will need to
replace these implicit feature models by explicit features representations. Liu et al. [72] make use of implicit
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features. First, they learn a post embedding and a user model embedding with a user modelling network.
Then, they integrate this model to the ranking neural network as an input. They propose two different meth-
ods. 1) The first one is simply to concatenate as input the user model, the post and the response to rank.
2) The second method separately computes a post and a response representations conditioned on the user
profile by inputting into two different fully connected layers the user profile and the post or response. Finally,
these two new representations are combined by another fully connected layer. The weights of the network
are learned by back-propagation using a cross-entropy loss function. In a similar way, Li et al. [70] learn a
user embedding at the same time as they train their neural network architecture with conversation histories.
However, they integrate the embedding differently: the embedding is added as an additional component of
each cells in the LSTM decoder network, so that it is considered as a "parameter" of the network.

Tang et al. [104] integrate the user model in their neural network for review ratings by learning a user
matrix for each user, and multiplying each sentence input by this matrix. It is learned by back-propagation
with a cross-entropy loss function which includes the matrices as regularization term. The user matrices are
composed of a low-rank approximation specific to each user, and a global diagonal common to each user,
that enables to use this common part for previously unknown users. If we consider using this method, we
could additionally explicitly add our user features in another way. We could compare having one user matrix
per annotator or one user matrix per demographics category.

Deep Learning architectures with conditioned inputs
We also searched for research interested in conditioning the models outputs with different kinds of infor-
mation. Indeed, it could be an inspiration to design algorithms which are conditioned on the annotator
specificities.

In [102], a Deep Learning architecture is defined to memorize prior informations contained in sentences
before replying questions. For that, the informational sentences are entered in the network as memory cells,
while the input question is on one side transformed by these memory cells to form one output, and on the
other side kept unchanged to form a second output. Then, these two outputs are added and passed through
a softmax layer to output the answer to the question. Similarly, Joshi et al. [65] input a user profile in the
memory network so that the network outputs are conditioned on this profile. The profile is passed to the
network in a same way as if it would be a conversation history, and is defined by words such as the gender,
age, favourite food.

Zhang et al. [117] are interested in both giving a personality to chatbots and also adapting the chatbot
utterances to the person it is interacting with. For that, they define the personality as a set of sentences de-
scribing a person interests (for example, one persona in [117] is defined as: "RPGs are my favorite genre. I also
went to school to work with technology. The woman who gave birth to me is a physician. I am not a social
person. I enjoy working with my hands."). Then, they define new Deep Learning models for response gen-
eration taking into accounts the two sets of personalities (chatbot and interlocutor). The first model simply
extends the input by concatenating the persona with the sentence input, and feed them to the LSTM neural
network. The second one (called generative profile memory network) enters the persona into memory cells
on which the output is conditioned.

Another method which is used to personalize Deep Learning outputs to each user is to choose some pa-
rameters of the network and make them user dependent. The networks are then trained by back-propagating
the error on the specific user training data to the specific user parameters. This is done for example to train
speech recognition neural network personalized for each speaker [103].

Finally, in the field of recommendation systems, some examples can be found of ways to integrate user
models to Deep Learning models. Mainly, the users are represented as a set of features which is concatenated
to the other inputs. For example, the features can be represented as normalized continuous values between
-1 and 1 as in [31].

2.3.4. Discussion
RQ3. The literature where algorithms outputs are adapted to certain users is mainly related to chatbot per-
sonalization. We can investigate how to adapt these neural network architectures to our problem in order
to integrate a user model in the learning process. Another possibility to make the outputs user-specific is
to use the identifier of each user without additional user modelling in order to model the correlations be-
tween annotations and users without considering the properties of these annotators. A future extension of
our work could be to use techniques for user modelling using previous conversations and integrate these to
our offensiveness prediction network, in order to take into account the context of the sentences.
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2.4. Definition and evaluation method of algorithmic fairness
Fairness of Machine Learning algorithms is an important property to take into account considering that they
are now used for human-related tasks such as credit scoring in mortgage or consumer credit, racial profiling,
... [90] Usually the performance of algorithms are evaluated by computing a metric such as the error between
the algorithms’ outputs and the expected outputs on a test dataset. However these metrics are not informa-
tive about the fairness of the algorithms. That is what Chouldechova et al. [28] show on the task of predicting
recidivism: they compare the performance of two algorithms using global metrics like the accuracy and the
Area Under the Curve, and show that even if these values are very similar for the two, their fairness perfor-
mance are very different. This is why it is necessary to create specific metrics to assess the fairness of the
algorithms.

However, still few research, usually found in the FAT* conference 5 (Fairness, Accountability, and Trans-
parency) and FAT/ML conference 6 (Fairness, Accountability, and Transparency in Machine Learning), are
interested in defining and evaluating the fairness of Machine Learning algorithms’ outputs [46], mainly in
investigating whether they discriminate certain categories of population. In a majority of the papers, the def-
inition of fairness is confused with the metrics to measure it, and sometimes with the solutions to make the
algorithms fairer.

2.4.1. Methodology to search for the papers
To search definitions and evaluation metrics dealing with fairness of Machine Learning algorithms, we did a
Google Scholar search and went through all the papers of the new FAT* and FAT/ML conferences, as well as
the references of the retained papers. We selected the papers which mention evaluation metrics of learning
algorithms, related to bias or fairness because bias is often related to fairness of the algorithms. For example
a gender bias can be considered as unfair towards one gender.

2.4.2. Definitions of algorithmic fairness
Dictionary’s definitions
According to the dictionary’s definition, fairness is "the quality of treating people equally or in a way that is
right or reasonable" 7, or is also defined as an "impartial and just treatment or behaviour without favouritism
or discrimination" 8. The definition of fairness is therefore not strict. Certain definitions are targeting equal-
ity between individuals, while others do not specify to which entities fairness is related to. In a same way,
certain definitions deal with equality while others do not but mention impartiality of treatment as well as
discriminatory attitudes.

Definitions from a Machine Learning perspective
Certain Machine Learning algorithms are used to classify people or use information related to people to per-
form classification tasks. People are represented by two types of features: protected features (features such
as race, gender, religion on which people should not be discriminated) and non-protected features (other
features used to describe people such as their age, the number of prior convictions, ...). These features might
constitute the inputs or part of the inputs of the system which makes a prediction, or correlations between
the actual inputs of the system and these features might exist.

Several essays [12, 106] investigate fairness and discrimination in machine learning from a philosophical
point of view. Most papers agree on the definition of algorithms’ fairness: a fair algorithm is an algorithm
whose outputs do not discriminate between different classes of people. The papers only differ in the details of
the formulation of the definition. For example, Binns [12] sees ML algorithms’ unfairness as the "differences
in treatment between protected and non-protected groups". This means that a chosen metric to evaluate the
performance of an algorithm should have equal values when evaluated for different categories of population,
these categories being defined by differentiating between people whose protected features’ values are same
or different. Similarly, Kamishima et al. [66] define fair predictions as "unbiased and non-discriminatory in
relation to sensitive features such as gender, religion, race, ethnicity, handicaps, political convictions, and so
on" (sensitive features is another way to call the protected features).

5https://fatconference.org/
6https://www.fatml.org/
7https://dictionary.cambridge.org/dictionary/english/fairness
8https://en.oxforddictionaries.com/definition/fairness

https://fatconference.org/
https://www.fatml.org/
https://dictionary.cambridge.org/dictionary/english/fairness
https://en.oxforddictionaries.com/definition/fairness
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Zliobaité [120] and Agarwal [1] present a similar but more precise definition of ML algorithms’ fairness,
still assimilating fairness to non-discrimination. They consider an algorithm fair when it verifies the demographics-
parity definition: the predictions of the algorithm are independent of any protected attribute. Precisely, for
Zliobaité [120], "(1) people that are similar in terms of non-protected characteristics should receive similar
predictions, and (2) differences in predictions across groups of people can only be as large as justified by non-
protected characteristics." which means that 1) the predictions should not be dependent on the protected
characteristics but only on the non-protected ones, 2) and if the protected ones are dependent on the non-
protected ones the outputs should be analysed and justified. Kamishima et al. [66] on the contrary see these
two cases not as actual definitions of fair predictions but as potential causes of unfairness. They describe
three possible causes of unfairness: direct or indirect prejudice (what corresponds respectively to cases (1)
and (2) of Zliobaité [120]), underestimation (the difference between the real distribution and the distribu-
tion resulting from the training on a finite dataset of a Machine Learning model, of the classified attribute
conditioned on the protected feature), and negative legacy (the unfair sampling or labelling of the training
data which results in biases of the trained models). These three aspects of unfairness, contrary to the other
definitions, do not refer directly to the difference in treatment between different categories of population but
investigate the unfairness for each category of population without comparing them explicitly.

Corbett-Davies et al. [30] also consider fairness as equal treatment of protected and non-protected cate-
gories of people, but they highlight three trends in the definitions and corresponding evaluation methods of
fairness for the case of algorithms made to select defendants to detain: statistical parity (equal proportion
of defendants detained in each protected group), conditional statistical parity (equal proportion of defen-
dants detained in each protected group, conditioned on some reasonable attribute of the defendants, such
as the number of prior convictions), and predictive equality (equal accuracy of decisions across race groups,
measured with the false positive rate).

Zemel et al. [116] highlight that there are two different goals related to fairness: group fairness (which
is equivalent to statistical parity), and individual fairness. Group fairness is limited because it might have
unwanted and unfair consequences (for example when ensuring statistical parity by choosing unqualified
individuals in the protected group), that is what individual fairness aims at correcting by ensuring that indi-
viduals who are similar with respect to a particular task are classified similarly.

Zafar et al. [115] object that there is a trade-off between increasing the fairness of algorithms according
to the current definitions of fairness (parity of treatment or impact between categories of population) and
ensuring a high global accuracy of the algorithms. To avoid this trade-off, they propose a relaxed definition
of fairness, which they call preference-based fairnesss: "under preferred treatment, no group of users (e.g.,
men or women, blacks or whites) would feel that they would be collectively better off by switching their group
membership (e.g., gender, race)."

Hardt et al. [55] object to the demographics-parity definition that they claim is not appropriate for fair-
ness because it only aims at getting equal percentage across groups but does not make sure that the positive
classifications in each group correspond to the ground truth classifications. Instead they propose a definition
relying on equalized odds: "a predictor Yp satisfies equalized odds with respect to protected attribute A and
outcome Y, if Yp and A are independent conditional on Y", Y being the ground truth. This is equivalent to the
equality of true positive and true negative rates across groups for binary classification problems. They also
proposed a relaxed definition called the equal opportunity: "a binary predictor Yp satisfies equal opportu-
nity with respect to A and Y if Pr(Yp = 1 | A = 0, Y = 1) = Pr(Yp = 1 | A = 1, Y = 1)", what is only the equality of
the true positive rates. Zafar et al. [114] propose a similar definition that they call disparate mistreatment: a
model suffers from disparate mistreatment when the misclassification rates differ for groups of people from
the different protected and non-protected categories. The only difference lies in the metric chosen for the
calculation of the misclassification rates which can be overall misclassification, false positive or false nega-
tive rates, ...

Most papers are interested in fairness related to the discrimination power of the algorithms’ predictions
(relationship between the outputs of the algorithms and implicit features) due to the trained prediction mod-
els or the dataset used to train them. However, there is also another rarer direction to study fairness. Certain
researchers such as Binns et al. [13] study the bias introduced by the persons who participated in the creation
of the dataset to train the algorithms on, and its effects on the fairness of the algorithms’ outputs, what is close
to the negative legacy [66]. For them, a fair algorithm is an algorithm which exhibits equal performance for
the different categories of population who participate in the dataset annotation -the categories of population
are also usually based on protected features.
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2.4.3. Metrics to characterize and evaluate algorithmic fairness
Zliobaité [120] surveys the traditional metrics to measure discrimination in algorithms by distinguishing be-
tween statistical, conditional, structural and absolute measures. These metrics all compare the performance
or distributions computed over the predictions of the algorithms across groups of people. For example,
Chouldechova et al. [28] define "fairness metrics" as metrics which correspond to differences in a particu-
lar classification metric across groups, and they take the example of the difference between the false positive
rates calculated for one category of the population and the other as an indication of possible unfairness of
the algorithm. Binns [12] lists these current metrics for fairness of the algorithms, and points out that none
of them is preferable to the other but that their combination to optimize the algorithms is not possible math-
ematically and thus one metric has to be chosen depending on the task at stake. It is advised not to aim
at equalizing the percentage of positive/negative classification rates between the identified groups because
it would not take into account legitimate discriminations. Thus, more "nuanced" measures are mentioned
such as the equalization of the "accuracy equity" (the accuracy of the classifiers for each group).

Kamishima et al. [66] on the contrary define indexes which enable to evaluate the different causes of
unfairness, without explicitly comparing the different groups.

Binns et al. [13] have a tilted angle in their evaluation of algorithmic fairness because they investigate fair-
ness towards the dataset’s annotators by comparing the performance of algorithms for data corresponding
to different categories of population. They show on a toxicity dataset that the implicit norms that annota-
tors of the data samples have lead to discriminating-biases in the dataset and consequently in the automatic
prediction systems. Specifically, they show that the gender of the annotators influence the final labels of the
samples in the dataset and therefore training one unique classifier on the majority vote labels leads to higher
prediction performances for one of the genders’ collective judgements (majority vote). This quantification of
the inequality of accuracy performance on the majority vote for different populations is what they define as
unfairness of the system.

Several papers are interested in identifying automatically for which sub-groups of the population the al-
gorithms are unfair. Zhang et al. [118] investigate the automatic identification of the sub-groups of protected
characteristics for which the algorithms are biased, and propose an iterative algorithm which outputs these
most biased sub-groups. Vzliobaite et al. [121] are particularly interested in fairness for algorithms which
classify samples which are partly described by sensitive features. They propose measures to quantify how
much the outputs of the algorithms are biased towards certain feature values, and how certain categories of
population have their accuracy lower than the accuracy of the most frequent demographics. Chouldechova
et al. [28] work on the comparison of the fairness of different algorithms. They propose a method to automat-
ically find out which are the sub-groups of the population for which the difference of fairness performance
between two algorithms is the largest.

2.4.4. Methods to mitigate algorithmic unfairness
Certain research aim at making the algorithms independent of the sensitive features [121] to make them fairer.
It is shown that the unfairness is partly due to the datasets which are not balanced for these sensitive features
and different methods are used to resolve the unfairness. Certain papers propose to resample the datasets.
For example, Buolamwini et al. [18] investigate biases present in automated facial analysis algorithms and
datasets with respect to phenotypic subgroups (based on gender and skin color). They divide the population
present in the dataset in categories and measure how well represented they are in the full dataset. They
propose a fairer dataset by balancing these categories. Additionally, they define a non-biased evaluation of
current algorithms, by computing their accuracy separately for each category.

Other papers define new objective functions [116, 121], or regularization terms for the objective functions
of the classifiers [66], which take into account the discrimination. Others propose to train different classifiers
for different demographics, such as in [13, 45].

Binns et al. [13] train classifiers for each category of population defined with the protected attributes
(gender in their case) separately to make the predictions fairer. They discover that the outputs’ performance
remain unfair for one of the genders. Second, they highlight that even within each gender category, there is
disagreement on the annotations. Although they consider fairness as algorithms’ performance equality on
collective judgements between different population categories, since there is disagreement between these
categories, it seems that this might not be justified to consider fairness along this criterion, but that each
annotator judgement should be considered separately.
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2.4.5. Discussion
RQ2. The increase in research tackling fairness and accountability of Machine Learning algorithms is very
recent. Although there are multiple definitions of fairness, we noticed that unfairness is usually considered
as discriminative behaviours of the algorithms, discrimination being related to protected categories of popu-
lation. Similarly we could define protected categories of population for our task of toxicity prediction, mainly
categories based on demographic information like age, gender, education level since we saw previously that
these variables influence the perception of toxicity. We could evaluate our models on the different categories
separately (with accuracy or other metrics) and aim at balancing the error rates across groups to mitigate the
potential unfairness.

Most definitions of fairness proposed in the literature are related to distinct groups of people. However,
our final aim is not fairness as a discrimination-related property of algorithms identified by looking at spe-
cific categories defined by demographic information. We aim at achieving algorithmic fairness as a property
related to the equity of opinions’ representation by respecting all the different legitimate opinions in the
dataset. Moreover, we are not exactly considering the same task in our problem since our input samples are
not the persons to classify and consequently are not dependent on sensitive features (the demographic fea-
tures), but the samples to classify are sentences whose associated labels are dependent on the persons who
judge them and on their possible descriptive "sensitive" features.

Despite these differences, we could get inspiration from these works to measure whether our algorithms
are fair in representing the different opinions on a same sample. In order not to focus on possible demo-
graphic discrimination and to equally represent all the different judgements on one sample, we could evalu-
ate fairness of our models on an individual-level instead of a group-level, by using the metrics proposed on
the group level in the fairness literature. For example we could separate the dataset into bins of annotators or
sentences divided according to specific criteria such as the average agreement rate of the annotators with the
opinion of the majority (equality of representation between annotators’ opinions) or the sentence ambiguity
(equality of representation between clear and ambiguous sentences), and comparing the performance of the
algorithms’ predictions on these different bins.
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2.5. Crowdsourcing and subjectivity
In the following section, we study what are the techniques employed to crowdsource subjective properties of
data samples. The aim is to understand how to proceed to collect and evaluate a training dataset.

2.5.1. Methodology to search for the papers
In this section, we search for the literature dealing with the annotation of subjective tasks. Therefore, we
started by using the query "crowdsourcing subjective + (task or annotation)". Later on, we also found out
that Quality of Experience experiments were related to subjective tasks, so we added the query "crowdsourc-
ing quality of experience". First, we retained the papers explaining how to ensure the quality of the crowd-
sourcing outputs. We also chose the papers which explained methods or metrics to evaluate the quality of
crowdsourcing tasks related to subjective data.

2.5.2. Crowdsourcing methodology for corpus annotations
Sabou et al. [91] present guidelines on how to operate crowdsourcing tasks for corpus annotations. They
identify four steps in the crowdsourcing process and give recommendations: the project preparation, the data
preparation, the project execution, and finally the data evaluation and aggregation. The project preparation
consists in defining the specificities of the crowdsourcing task, how it will be presented to the workers. This
has an importance when using crowdsourcing for subjective evaluations because techniques to ensure the
annotation quality must be set up at this step; and should be supplemented by pre-filtering the crowd workers
for example based on their language proficiency or on their answers to training questions. The last step also
merits investigation since it might not be meaningful to aggregate all the annotations for one sample together
when we want to leverage the subjectiveness of the worker judgments. These two steps are reviewed in the
following sections.

2.5.3. Identification of variables influencing subjective annotations
Hossfeld et al. [59] perform a study to determine the parameters which have an influence on the evaluation
of the YouTube video quality. For that, they gather a number of parameters, and compute metrics indicating
correlations between these parameters and the annotations. First, they compute the Spearman rank-order
correlation coefficient between the subjective user rating and the variables. Then, they also use Support
Vector Machines to classify between high and low-quality videos, and check which features (corresponding
to the variables) obtain larger weights, what suggests more importance.

Ghadyaram et al. [53] separately look at the influence of gender, age, and experiment set-ups, these last
variables having more influence in image quality appreciation. For that, they divide the annotations of the
workers belonging to the different demographics categories and compare whether they are similar or differ-
ent.

Wulczyn et al. [111]9 investigate biases when crowdsourcing to constitute a dataset of toxicity in Wikip-
iedia comments. They compare using binary labels ("probability that the majority of annotators would con-
sider the comment an attack") and empirical distribution labels ("predicted fraction of annotators who would
consider the comment an attack"), to train Machine Learning classifiers that they evaluate with the Spearman
rank correlation and the Area Under the Curve. They show that aggregating the annotations as empirical dis-
tributions leads to better classifier performances. However, they do not investigate what are the crowd worker
characteristics which influence their ratings. In their dataset, they record some of the workers background
information.

2.5.4. Techniques to ensure crowdsourcing quality
General methods for ensuring quality in crowdsourcing
First, we look at the literature which investigates crowdsourcing for Quality of Experience (QoE) evaluation,
which is a subjective task since this evaluation depends on people’s appreciation of the samples based on
their internal beliefs.

Hossfeld et al. [59] study QoE of YouTube users. To collect subjective evaluations of the annotators while
ensuring a certain annotation quality level, they use several techniques. First, they make use of gold standard
questions over samples whose evaluation is objective. Additionally, they perform consistency tests: they ask
several times the same question to workers (formulated slightly differently), and eliminate workers whose

9https://github.com/conversationai/unintended-ml-bias-analysis
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answers vary a lot. They also ask content questions (questions about the content of a sample) with objective
answers; and design mixed answers: they vary the presentation of the answer scales so that a worker always
clicking on the same answers will give inconsistent results. Finally, they suggest that user monitoring can be
employed, for example by checking that the users at least spend a minimal amount of time on each ques-
tion, they do so by monitoring the focus time on the crowdsourcing webpage. In summary, to filter the crowd
workers, they proceed in three steps: they eliminate users who provide wrong answers to 1) content ques-
tions, mixed answers or consistency questions; 2) gold standard questions; 3) user monitoring verifications.
They show that their method is efficient since each step eliminates 25% of the workers. Similarly, Redi et
al. [84] combine several methods for ensuring quality such as content questions, and target countries with a
large English speaking population. They also add a mandatory training for each worker. They filter the work-
ers based on their answers to the content questions and on their attention time, and they delete the workers
who are considered as outliers.

Ghadiyaram et al. [53] prefilter workers by selecting only the ones who have a high confidence value
on Amazon Mechanical Turk. Additionally, they show several times the same samples and exclude workers
whose annotation difference exceeds a certain threshold on these samples. Moreover, other studies [16, 74]
perform worker selection, by employing the workers who possess the specific skills required for the specific
task (for example by modelling the workers based on their social media data).

Ribeiro et al. [88] choose not to perform pre-filtering of workers but they do post filtering. Once enough
data are collected, they compute the Pearson sample correlation coefficient between the MOS estimates from
a worker and the global MOS estimate. They eliminate the worker annotations from the workers whose cor-
relation value is lower than a threshold. They additionally pay bonuses to best performing workers.

Snow et al [97] recalibrate the data to correct the individual biases, by comparing each worker annotations
to the gold standard examples, and modifying the labels according to these comparisons (detecting noisy
annotators and anticorrelated workers).

Alonso et al. [4], although not focusing on subjective QoE evaluation but relevance assessment, investi-
gate the importance of different crowdsourcing aspects. They propose to have the workers take a qualification
test (general questions about the task topic) along the gold questions, in order to filter them. Additionally,
they show that the quality of the user interface (instruction clarity, text presentation) impacts the quality of
the annotations. Finally, they ask one open-ended question to get user feedbacks, what enables them not
only to get useful incites on their task design, but also to detect spammers.

These studies do not aggregate the annotations of each worker.

Methods specifically interested in ensuring the subjectivity of the workers
Speck et al. [101] aim at collecting a dataset for music pieces classification. They ask crowd workers to choose
arousal and valence values while listening to a music piece. Since this task is very subjective, they are specif-
ically interested in removing incorrect workers while making sure they account for the workers subjectivity.
For that, they train a one-class SVM with the positive expert labels (music Information Retrieval researchers)
on a few data samples, later they exclude workers whose annotations on the verification samples are on av-
erage outside the decision boundary of the trained SVM. They assume that the expert labels differ enough
to represent the different possible judgments over one sample, and therefore the crowd workers annotations
should not differ much from them. They also add a second stage of filtering simply based on the consis-
tency of the answers. Even though they present high precision, recall and F-measure with this method to
automatically classify workers, they do not compare it with other baseline methods.

Brew et al. [17] perform sentiment classification of news content and collect data via crowdsourcing to
classify news between positive and negative sentiment, as well as relevant or irrelevant (dealing with eco-
nomics topic or not). They show that certain samples are more subjective than the others, depending on the
worker agreement rate; and that their learning algorithms learn better using high-agreement samples. More-
over, they show that coverage (using more data samples with fewer annotators) enables better learning than
consensus (using less data samples with more annotators), in cases where the consensus rate is globally high.
They conclude that it is necessary to identify which workers are close to the consensus opinion and to select
them for annotation.

Dumitrache et al. [42] are interested in crowdsourcing for medical relation extraction (for a Watson ser-
vice) since it is not possible to collect enough data with expert annotators. They compare semi-manually la-
beled annotations to 1) automatic annotation method, 2) expert annotations, 3) single crowdsourced annota-
tions, and to 4) aggregated crowdsourced annotations. They show that with appropriately-tuned aggregated
crowdsourced annotations, they get a higher annotation quality than with the other annotation methods.
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Moreover, they show that when choosing the correct parameters, these non-binary aggregated crowdsourced
annotations enable to train classifiers with an higher accuracy than with the other constituted datasets. When
investigating the number of crowd workers required, they find that with 10 annotators, the annotation quality
is maximal. Their annotation aggregation method is as follows: 1) first, they add all the workers annotations
in one vector (sentence vector), 2) then, they compute for each dimension the cosine similarity between the
vector and the corresponding unit vector, 3) finally, they rescale the resulting vector with positive and neg-
ative values between [0.85;1] and respectively [-1;-0.85] according to a determined threshold defining which
values are positive or negative. In [43], they first run a sentence metric to eliminate the sentences which
are too ambiguous before running the annotators metric to eliminate low-quality workers with the worker
disagreement metric [7]. They train models on the cleaned data.

2.5.5. Metrics to evaluate crowdsourcing quality
Hossfeld et al. [59] consider two different types of reliability of the user studies: intra-rater and inter-rater
reliability. The first reliability considers the consistency of the annotations of one unique annotator (averaged
over all the annotators), by computing the Spearman rank correlations over the answers of each user. This
is possible because each user rates three videos for which only one known parameter varies with a known
effect on the subjective judgment. The second reliability measures the agreement between annotators by
computing the Spearman rank-order correlation coefficient between all user ratings and the varied stalling
parameter for all user ratings in a campaign. Ghadyaram et al. [53] also compute inter and intra subject
consistency with gold standard data. They also employ gold standard questions to compute the correlation
between the annotation Mean Opinion Score (MOS) and the laboratory data MOS to check reliability of the
annotations.

Similarly, Snow et al [97] compare the inter-annotator agreement of individual expert annotations to that
of single non-expert and averaged non-expert annotations. They also compute how many non-experts are
needed to get similar performances than with experts.

Moreover, to evaluate whether the disparity between user judgments is too high to be realistic or is low
enough to suggest high quality annotations, Hossfeld et al. [59] use the Standard deviation of Opinion Scores
(SOS) hypothesis [58], which determines a relationship between the SOS and the MOS. It is specified that
this relationship holds only for Quality of Experience studies, and these studies must consist in ratings on a
K-point scale.

Ribeiro et al. [88] explain a method to compute the MOS score and the confidence interval of the crowd-
sourcing experiment. Redi et al. [84] employ normalized MOS scores. They compute the correlation be-
tween the crowdsourcing experiment and the laboratory experiment MOS scores. Similarly, Keimel et al. [67]
and Speck et al. [101] compute the correlation between the results obtained by crowdsourcing and in lab-
experiments.

Hsueh et al. [62] define three quality metrics. They compute the deviation of each worker annotation to
the gold standard (what they call the noise level). They consider the gold standard as the majority voting an-
notations. Secondly, they compute the ambiguity of each sample based on the sample annotations. Finally, a
third metric called confusion combines the previous two metrics. These measures are used to remove certain
annotations from the dataset, and improve the accuracy, especially with the confusion. Thus, not only do
they show that it is useful to remove low-quality annotations for training, but they also point out that active
learning would then enable to considerably reduce the amount of data needed to train classifiers.

Chen et al. [26] crowdsourcing approach is different since they ask the workers to compare each time
between only two samples to simplify the task. To measure the quality of the annotations, they check the
individual consistency and the overall consistency of the annotations.

Dumitrache et al. [42] highlight as factors which create disagreement between workers not only the ex-
pertise of the crowd workers, but also the way the task is defined, and the ambiguity of each sample. Indeed,
interpretation and annotation rely on three different related concepts named as the "triangle of reference" [8]
(the interpreter, the sign and the referent): "the interpreter perceives the sign (e.g. a word, a sound, an image,
a sentence) and through some cognitive process attempts to find the referent of that sign (e.g. an object, an
idea, a class of things)". The CrowdTruth framework proposes several metrics to evaluate the three corners
of the triangle: the crowdsourcing workers (low quality or spam), the sentences (clarity), and the relations
(similarity). Representing the annotations as vectors, they iterate to compute several cosine similarities in
order to obtain quality metrics.
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2.5.6. Discussion
RQ1. In this section, we investigated the best-practice methods for crowdsourcing annotations and we gave
a special attention to the methods dealing with subjective data.

First, considering that we want to use demographics information to make the subjective predictions, we
should investigate whether there are correlations between the different features and the labels in our dataset,
in order to identify whether some demographics are more important than the others to predict offensiveness
perception. This can be done using one of the methods cited above.

In order to run a crowdsourcing task to collect high-quality data on subjective undesired speech per-
ception, we should filter the crowd workers. For that, we should use one or several techniques cited above
in order to have a way to measure the crowd workers quality. Mainly, we should ask some questions with
objective answers about the sentence sample context, and we could also find data samples with obvious of-
fensiveness judgements, in order to judge which crowd workers input correct answers. Moreover, considering
that in our dataset, the workers did not all annotate the same samples, we cannot use the usual crowdsourc-
ing quality metrics. We could instead use the CrowdTruth framework in order to identify which are the low
quality workers, the ambiguous sentences, and possibly the annotation classes which are too similar. Since
we aim at keeping the annotators and annotations which might differ from the consensus opinion, but which
are still true, we can use one or several of the above methods to filtrate the annotations of totally wrong users.
However, we have to pay attention not to eliminate workers which give correct but unusual answers.

Finally, it would be useful to detect the most ambiguous samples with the annotator agreement rate or
[43]’s metrics, and request more annotations for these samples; while also eliminating the low-quality work-
ers. This way, we would have more data to train the algorithms on the subjective samples and improve their
performances on these types of data.

2.6. Summary
With this chapter, we produce the first contribution of the thesis: the extensive literature review about Ma-
chine Learning, Crowdsourcing, fairness and subjectivity, with a usecase in sentence toxicity prediction.

Related to toxicity and related speeches (RQ1), we found out that toxicity is a subjective property of sen-
tence, and that toxicity perception depends on three main types of variables (the sentence characteristics,
the sentence context, and the individual judge internal characteristics).

For the Machine Learning algorithms to perform sentence toxicity prediction (RQ3), we found out several
algorithms which are traditionally used. We will experiment with these ones since it is not possible to deduce
the most performing ones from the literature. To adapt the algorithms’ predictions to each user, we identified
to main possibilities: adapting certain parameters of the algorithms to each user, or inputting additional
user-related inputs to the algorithms.

Concerning the evaluation of the algorithms (RQ2), we found out that usual evaluation methods do
not enable to make conclusions concerning the fairness of the algorithms and that we consequently need
adapted evaluation metrics. Research currently interested in fairness look at the discrimination power of the
algorithms. However, we want to look at a more general kind of fairness, fairness towards each user of the
algorithms, and therefore we will adapt the usual definitions to our purpose.

Concerning the creation of the dataset (RQ1), we found out that the toxicity-related speeches have blurry
definitions and it is advised to use a precise definition to collect toxicity annotations via crowdsourcing. Sev-
eral methods can be employed to ensure a high-quality of the crowdsourced data. Moreover, in order to
decrease the amount of variations in the crowdsourced annotations, we should fix as many variables as pos-
sible which influence the perception of toxicity-related speeches, mainly the variables related to the sentence
context.
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Dataset to study sentence toxicity as a

subjective property

3.1. Introduction
In this section, we are interested in the creation of datasets for the training of algorithms for subjective prop-
erties classification, and aim at answering the first challenge through the first question (RQ1): how can a
dataset be built to train algorithms for the prediction of subjective properties? There are three main direc-
tions in this study. We prove that our main research question is justified with the use-case of toxicity classifi-
cation, by investigating whether the chosen dataset (Jigsaw toxicity dataset) contains multiple subjectivities.
We investigate the crowdsourcing techniques to harness the different subjectivities in the dataset while creat-
ing it. We reflect on how to collect the annotations of subjective properties at a low cost. Each of these aspects
correspond to different sub-questions.

1. How can the prediction of subjective properties be studied from a Computer Science perspective? (RQ1.1)

(a) Is toxicity a subjective property of sentences? What are the human-related variables which influence
sentence toxicity perception?
→ We search the psychology literature about offensiveness (and possibly toxicity) to show that it
is a subjective property of sentences, and to find a set of variables influencing toxicity perception.

(b) Are there different valid opinions in available toxicity datasets?
→ We show that the Jigsaw toxicity dataset exhibits different valid toxicity judgements per sen-
tence, and therefore that sentence toxicity is a valid use-case to study subjective properties pre-
diction. We assume that disagreement between annotations of a same sample is a sign of different
possible opinions. After cleaning the selected dataset, we compute the distribution of disagree-
ment rate of the workers’ annotations with the majority-voting label and show that there are dif-
ferent valid opinions for each sentence.

2. How to collect crowdsourcing annotations of high-quality when the property to annotate is subjective?
How to identify and remove spammers’ annotations while keeping the valid annotations? (RQ1.2)
→ We review the Crowdsourcing literature and list the methods to create clear crowdsourcing tasks
and to filter low-quality crowd workers and annotations during these tasks and during the annotation
post-processing step. We investigate to which extent these techniques are applicable to subjective clas-
sification tasks, with a special focus on the CrowdTruth method for which we manually verify that it is
applicable to our use-case.

3. How to collect crowdsourcing annotations on a large dataset while maintaining a low cost? (RQ1.3)
→ We hypothesize that certain clustering methods enable to cluster the samples on which to collect
annotations so that only annotating a reduced number of samples inside each cluster and spreading
the annotations inside the clusters would provide correct annotations for the whole dataset. We reject
this hypothesis by conducting experiments on the retained dataset.
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3.2. Toxicity in psychology and dataset choice
In this section, we focus on the first sub-question: How can subjective properties prediction be studied from
a Computer Science perspective? (RQ1.1) Our aim is to study the prediction of properties which are subjec-
tive, in other words we want to study properties on which there is disagreement between the judgements of
different people. Consequently, supposing that sentence toxicity is subjective, we hypothesize that:

H1: the use-case of sentence toxicity is a valid domain of application for the study of subjective
properties from a Computer Science perspective.

Here, we validate this hypothesis by verifying whether sentence toxicity is a subjective property in the-
ory, and we later verify it in practice by investigating whether toxicity datasets found in Computer Science
research comprehend disagreement on the judgements of sentence toxicity. The quality of these datasets
should first be evaluated and possibly improved before being able to judge whether several valid subjectivi-
ties are contained in them. That is why we proceed here only to a theoretical investigation of sentence toxicity
and make a choice of a Computer Science dataset to investigate. In Section 3.3 we proceed to the quality eval-
uation so that in Section 3.4 the presence of different subjectivities can be judged.

3.2.1. Sentence toxicity as a subjective property in the psychology literature
First we look at the theory about sentence toxicity found in the psychology literature to investigate its sub-
jective character and answer: is toxicity a subjective property of sentences? What are the human-related
variables which influence sentence toxicity perception? "Subjective" is defined as "based on or influenced
by personal feelings, tastes, or opinions."1. From our literature review on the toxicity of Web content and
related concepts (hateful speech, abusive language and offensiveness) (Section 2.1), we conclude that offen-
siveness is a subjective property of sentences. Although toxicity and offensiveness might be two different
concepts, since there is no precise definition of toxicity we claim they are closely related and consequently
we can consider that toxicity is also a subjective property of sentences.

The literature enables to draw a list of the influencing variables in sentence toxicity perception. These
variables are listed in Table 2.1 (Section 2.1) and are divided into three categories -the variables related to the
internal characteristics of the person reading the sentence (the most important ones being gender, age, ethnic-
ity and education level), the variables related to the sentence characteristics, and the variables related to the
sentence context. According to the definition of subjectivity, a dataset which exhibits subjective judgements
should comprehend variations along the first category of variables, while variations on the other categories
would participate to the differences in toxicity perception but not because of the subjective character of tox-
icity. Variations of the sentence characteristics are intrinsic to the sentences themselves, they are common
to each reader of a sentence and thus do not participate in the variation of opinions about one sentence.
Variations due to the sentence context do not participate to the variation of opinions if the context is explicit
and thus common to all the readers. If the context is implicit, it might lead to different interpretations of
a same sentence by different persons and consequently the dataset would exhibit multiple judgements but
these would not be directly related to the subjective character of toxicity. Thus, a dataset to study subjective
property prediction for sentence toxicity should be constituted of different sentences and different types of
readers of these sentences, and at best should present the sentence context explicitly.

3.2.2. Subjectivity in Computer Science datasets of sentence toxicity
We now choose a Computer Science dataset of sentence toxicity in order to analyse in the following sections
whether the subjectivities of toxicity can be found in practice in the Computer Science domain.

Requirements for the dataset
We wish to study the toxic property of sentences and how its subjective character influences crowdsourcing
tasks and Machine Learning models. Based on the findings of the previous subsection, we define a list of
requirements that a dataset should respect to enable this study.

In order to train Machine Learning models, the dataset should contain several sentences and toxicity
judgements of these sentences. To compare multiple algorithms (traditional Machine Learning classifiers or
Deep Learning neural networks) which require more or less data to be trained on, we need a large dataset
of many sentences. In previous papers working with Deep Learning for hate speech detection, the size of

1https://en.oxforddictionaries.com/definition/subjective
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the datasets varies greatly, between 6655 and 10 million samples (Section 2.2), but the performance reported
for the different algorithms trained on these different datasets are similar. Therefore, we assume that 100000
comments should be enough to predict binary labels, and it might also be sufficient to predict empirical
density labels since it is done successfully in [111] with a dataset of this size.

To study the subjective character of sentence toxicity, we need to make the different variables which influ-
ence toxicity perception vary independently. Consequently, we need different sentences to investigate how
judgements differ according to the variables related to the sentence characteristics ; and multiple toxicity
judgements per sentence by different people whose internal variables vary. In order for the sentence context
variable not to vary simultaneously with the other two variables, it should always be the same, or it could vary
but should be explicit so that the annotators all base their judgements on the same context.

Existing datasets are collected via crowdsourcing with multiple annotators per sample. Having access to
the different annotations that each annotator gave during the crowdsourcing task and not only to the final
labels after post-processing of the crowdsourcing results would enable to study the different toxicity judge-
ments emitted on a same sentence. The more annotations available, the higher the chance to collect differing
judgements due to differing annotator internal variable would be. In the crowdsourcing literature, it is ex-
plained that collected annotations might be incorrect and it is reported that using 10 annotations per sample
leads to the highest algorithm accuracies with distributed labels when training Machine Learning models on
these annotations [42]. However this number of annotators is adapted to the case where one unique label
or density estimated labels are predicted for each sample. In our case, we aim at considering several labels
correct depending on the annotators of the sentence, as long as the annotators gave their true opinion on the
sample. Thus we cannot affirm that 10 annotations per sample are sufficient for our problem.

Dataset choice
From the literature review, we found multiple datasets available related to sentence toxicity, hatefulness or
flames, but none of the datasets completely fulfil the requirements. Most of them do not make the anno-
tations of the annotators available but only give access to the final label. We eliminate these datasets since
they do not allow to study the differing judgements. The Jigsaw toxicity dataset [111] is a large dataset freely
available of the Google team Jigsaw, with around 100000 Wikipedia comments rated as toxic or not along a
J−2;2K scale (a more detailed description of the dataset is given in Appendix A.2). It presents around 10 anno-
tations per sample (1598289 annotations in total) collected on CrowdFlower 2, with information about part
of the annotators (gender, first language, age group, education level). It should enable to infer labels of high
quality, and to study correlations between people’s internal variables and toxicity judgements. It is the only
dataset with these characteristics, that is why we set up to conduct our experiments on it. The toxicity score
is ranging from very toxic (-2), to neutral (0), to very healthy (2). The Jigsaw team then aggregated the scores
into toxicity labels: 1 for toxic and 0 for non-toxic.

The main people’s internal variables cited in the psychology literature are the age, gender, education,
and ethnicity. The Jigsaw dataset nor contains information about the annotators’ ethnicity, neither on the
sentence context. That leads to limitations that we could overcome by collecting a new set of annotations
based on the Jigsaw dataset. We suppose for now that the dataset should enable to study the subjective
character of toxicity since different opinions for the available data samples should be found in the dataset due
to the different internal characteristics of the annotators. Subjectivity is only related to the people’s internal
characteristics but not to the sentence context, but because we can not eliminate this second variable we
decide to ignore it for now. For the whole project, we consider that the crowd workers background varies
along 3 dimensions (gender, age, education level), since the first language was not reported in the psychology
literature as an influencing factor for offensiveness perception.

The following crowdsourcing task (Fig. 3.1) was presented to the crowd workers when asked to label the
comments. In order to ensure annotation quality, the workers were pre-filtered according to the correctness
of their answers to 10 golden questions, and additionally the annotations of workers who gave opposite an-
swers to the same question were removed. Although it is not time-feasible in the extent of the master thesis,
rerunning a crowdsourcing task on the sentences with the lowest agreement rates or on the least frequent
demographics information, and capturing additional information about the annotators would enable to in-
vestigate how large the dataset should optimally be for our task.

2https://www.figure-eight.com/

https://www.figure-eight.com/


40 3. Dataset to study sentence toxicity as a subjective property

ahttps://github.com/ewulczyn/wiki-detox/blob/master/src/modeling/toxicity_question.png.

Figure 3.1: The question asked to the crowdworkers for the dataset creation. Source: Jigsaw team’s Github a

3.3. Crowdsourcing treatment of dataset annotations of subjective prop-
erties

Limitations of crowdsourcing, explained in the introduction and literature review, are mainly that crowd-
sourcing techniques to solve annotations’ quality issues rely on annotation filtering and annotation aggre-
gation based on the idea that one unique judgement of the sample is correct, whereas we are interested in
keeping several different but all valid judgements about a same sample. Consequently we need to investigate
how to collect annotations of high-quality without using current crowdsourcing techniques, what is the sec-
ond sub-question of this chapter: How to collect crowdsourcing annotations of high-quality on subjective
labelling tasks? How to identify and remove low-quality annotators’ annotations while keeping the valid
subjectivities? (RQ1.2)

To answer these questions, we proceed in two steps. First, we investigate whether the collection method of
the Jigsaw dataset is in par with the methods mentioned in the literature to design crowdsourcing tasks to col-
lect high-quality annotations, by searching the literature from three different fields (crowdsourcing, Machine
Learning and psychology), and create a list of possible improvements in the crowdsourcing task. Second,
we investigate the post-processing methods of crowdsourcing results to clean the collected annotations, and
check whether they are applicable to annotation tasks for subjective properties.

3.3.1. Design of the crowdsourcing task
We investigate how to design a crowdsourcing task to collect annotations of high-quality on subjective prop-
erties. Current research about the design of crowdsourcing tasks is aimed at making the task as clear as pos-
sible in order to eliminate as much ambiguity as possible and get as similar annotations as possible, and at
facilitating the understanding of the task for the annotators to be fast and accurate at providing annotations.
These are also the objectives of task design for the annotation of subjective properties, mainly elimination
of ambiguity is of special focus since only the variables related to the annotators’ individual characteristics
should vary. This leads us to formulate the following hypothesis:

H2: general crowdsourcing research on task design is applicable to the collection of annotations of
subjective properties.

In order to verify this hypothesis, we could compare the quality of the annotations returned by two crowd-
sourcing tasks on a same dataset, one task following the design recommendations given in the crowdsourcing
literature and one task without a careful design (baseline). However, due to cost limitations, we cannot run
a new crowdsourcing task and we cannot verify the hypothesis. Instead, we compare the recommendations
of the crowdsourcing literature on crowdsourcing task design to 1) the observations of the psychology litera-
ture interested in studying subjective properties related to toxicity, to 2) the suggestions given by researchers
who created datasets for sentence toxicity prediction, and to 3) our observations of the sentences in the Jig-
saw dataset. We verify whether the methods proposed in the crowdsourcing literature follow the suggestions
from other fields of research and could solve the limitations observed in the task of annotating subjective
properties.

Identification of limitations and suggestions in the literature
From Section 2.1.5 where we look at how psychology studies conduct experiments to collect judgements over
hate speech, we see that tests consisting of multiple questions over a sample whose answers are averaged to
obtain one unique judgement are used. This enables to get the correct perception of the test subject about
the sentence. The questions asked are part of psychology questionnaires, or are grouped around a same

https://github.com/ewulczyn/wiki-detox/blob/master/src/modeling/toxicity_question.png
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concept, or are sets of propositions that the annotators must rate depending on the validity for the samples.
The samples to judge are usually scenarios, what provides a context to the sentence to judge.

In Sections 2.2.3 and 2.1.5, we investigated how the Machine Learning researchers interested in toxicity
prediction collected their datasets and what future recommendations they gave. The Machine Learning pa-
pers which analyse the collection of annotations to build datasets related to human judgement of tweets or
other social media posts highlight the presence of disagreement between annotators despite the use of psy-
chology tests to obtain the labels. They propose several explanations for the disagreement: the psychology
questionnaires are not adapted to social web data, the sentences lack context (such as the writer, the target
and the context of the potential discussion) and the annotators have different perceptions depending on their
subjectivities. In this work we aim at highlighting the different judgements annotators have about one same
sample, therefore we should eliminate the disparities due to the lack of context but keep the ones due to the
annotators’ subjectivities.

The crowdsourcing literature (Section 2.5) highlights that the questions asked to the annotators should
be as clear as possible in order to collect high-quality annotations. For that, the questions should be as simple
as possible, possibly the property to annotate can be explained before starting the task, and examples can be
given of the expected annotations for some samples.

Analysis of the design of the Jigsaw dataset crowdsourcing task
We analyse the task created to collect the Jigsaw dataset (Fig. 3.1) based on the recommendations from the
literature and our observations on the data. The aim of the task is to collect high-quality annotations, what we
define as annotations which reflect the annotators’ judgements on the data samples to judge on one property,
excluding any possible judgement ambiguity coming from the task design and data samples.

Design of the crowdsourcing question. In the case of the Jigsaw dataset, only one proposition is given to
rate to the annotators, what is different from psychology studies where multiple propositions are given to the
participants to rate them and average the results. Using multiple propositions would enable to collect more
accurate judgements from the annotators and would help detecting possible spammers (in cases where the
answers do not match between each other) leading to higher-quality labels. Moreover, the scale ranges from
1 to 5 whereas the psychology literature have upper ranges varying from 6 to 12, what possibly changes the
perception of the annotators.

Design of the presented samples to annotate. From the psychology literature we identified the three
main variables which influence the perception of offensiveness and by extension toxicity. 1) The annotators’
individual characteristics are human-related variables and so they are not dependent on the design of the
crowdsourcing task, these are the variables we do not interfere with. 2) The sentence characteristics are what
makes the data sample and therefore can not be modified. 3) The sentence context (target, author, speech
in the overall discussion) consists in several variables which influence the perception of the speech. These
variables are not represented in the crowdsourcing task but they are also pointed out by the Machine Learning
papers, and they are specified in the psychology literature. Therefore we propose for further crowdsourcing
tasks to give out information to specify the sentence context of each data sample. It would enable to eliminate
one dimension of the causes of ambiguity. We give examples of sentences where the lack of context leads to
disagreement between annotators in Table 3.1.

sentence annotations causes of disagreement

"Ummm... you are very narcisistic. You
wrote an article about yourself."

-1(4), 0(6)
The target of the sentence is unknown. Subjective perception of the
adjective narcissistic.

"Everywhere, you were also very disrup-
tive as well."

-2(1), -1(2),
0(5), 1(2)

No context to identify whether the truth or a criticism is reported.

"Shush sweetie, the adults are talking."
-1(5), 0(3),
1(2)

Lack of context about the actors of the discussion: it is difficult to
judge whether the sentence is a mockery or not.

Table 3.1: Example sentences from the Jigsaw dataset which lack context indications.

Design of the explanations of the question. Another cause of misunderstanding and ambiguity in the
task is the design of explanations surrounding the question (namely explanations of the terms of the ques-
tion) asked to the annotators. Sentence toxicity is not explained at the beginning of the task. It is requested to
rate the toxicity of a sentence on a [-2;2] scale, but no example is given for each scale value, only descriptions
(accumulation of different adjectives which do not refer to the same concepts), what makes it for example
difficult to distinguish between neutral, healthy or very healthy sentences. The lack of instructions also make
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the range of valid answers broad, such as for sentences which convey a positive message but also use abusive
language or criticize a person or a group. It is not specified how annotators should judge these sentences
with two opposite toxicity aspects. The sentence might be healthy for the target of the speech (e.g the target
is thanked by the person writing the sentence) but toxic for the persons mentioned in the speech (certain
persons are criticized possibly using aggressive language). We cite examples of these sentences with the an-
notations associated in Table 3.2. This leads to differing interpretations of the questions by the annotators.

sentence annotations causes of the disagreement

"Oh... I.. yeah i feel like an ass now...."
-2(1), -1(7),
0(2)

Self-blaming and the rudeness of the vocabulary
might be judged differently by the annotators without
instruction.

"so wait, mr porcupine, when did you say you were
planning on blocking yourself?"

-1(5), 0(3),
1(2)

No instruction say how to resolve the lack of informa-
tion on the context (interpretation of the name used to
qualify the target and of the joke).

"I hereby wish to thank you for your continuous efforts
in protecting our templates from those gutless vandals
who get their sick kicks off removing them. May the
Force be with you !"

-1(4), 0(2),
1(4)

First and last parts are positive while the middle might
be toxic since it is disrespectful towards a specific tar-
get. No instruction to deal with two opposite judge-
ments.

"[...] including your friends and buddies maybe you can
do that 100 times a day (let me explain it in your IQ
level. Say you have 33 buddies like you. 33*3 = 99 edits.)
[...] Your childish desperations trying to humiliate me
with suggestions regarding the sandbox are just match-
ing the low ethics and discrimination policy of a per-
son like yourself. [...] You just have a good sense of hu-
mour. I suggest you read Merchant of Venice of Shake-
speare. [...] that is going to help you be cleansed from
your racist feelings against the fellows of other nations.
[...] Sincerely."

-2(1), -1(1),
0(5), 1(3)

The author exposes his rights and uses some respect-
ful language, but also mocks the target of the speech.
No instruction given for "mixed" sentences. Lack of
context does not enable to know whether the respect-
ful words are sarcastic.

"Did you even bother to read what it said? He said he
wanted me to delete it. Wake up."

-1(2), 0(6), 1
(2)

First and second sentences are neutral but the last one
is negative. Lack of instructions for "mixed" sentences.

"The transition between the first two paragraphs is hor-
rible. I’m not sure how to fix it; the content in para 1
does not appear related to para 2."

-1(3), 0(1),
1(6)

The sentence gives constructive criticism, but it might
be considered negative with the use of the adjective
"horrible".

Table 3.2: Example sentences from the Jigsaw dataset which receive differing judgements because of a lack of precisions in the crowd-
sourcing task.

Sentences with multiple interpretations due to annotators’ subjectivities. If the crowdsourcing task was
totally clear, the disagreement would only come from the perceptions that annotators have of the toxicity
of the elements of the sentence, and not from the ambiguity created by the lack of information about the
sentence or the task. We cite in Table 3.3 example sentences which are simply perceived differently depending
on people’s subjective perception (and possibly some interpretation of the context).

Discussion, conclusion and recommendations for our task
From the above observations, we were able to answer RQ2.2 by identifying the main limitations of current
crowdsourcing tasks for the collection of toxicity annotations: the explanation of the task lacks details (expla-
nations of the terms of the question, of the scale and citation of examples, instructions about extreme cases),
the design of the question might not be adapted to the collection of judgements of subjective properties (use
of multiple-question questionnaires in psychology but of unique questions in Computer Science), and the
samples lack context (sentence conversation context absent in Computer Science but present in psychology
experiments). On the contrary, the crowdsourcing literature advices for disambiguation and clarity of the
question for example by giving examples of annotations. It does not specifically address the issue of choosing
the question to ask the annotators based on psychology literature -what seems to be a point which would
merit more investigation-, but it does address the other current limitations. Therefore we conclude that hy-
pothesis H2 is partly verified: general crowdsourcing research on task design is applicable to the collection
of annotations of subjective properties, but the choice of the question asked to the annotators should be
investigated in more details in future research.

We now propose a list of recommendations to run a new crowdsourcing task on the same dataset.
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sentence annotations causes of the disagreement

"if you want to leave the article a bunch of lies,
controlled by a child. okay. you better be able to
prove what you say. it is not vandalising when
i correct lies. you better contact someone who
knows the truth before printing lies. there was
never a porsche motor in a yugo, etc. i guess this
13 year old knows more about cars than i do."

-1(3), 0(5),
1(2)

Sarcasm is subjective (perceived toxic or not). Potential criti-
cisms are judged differently.

"WHY CAN I NOT POST? PLEASRE UNBLOCK
ME I DO NOTHIN WRONG FRENS I DO NOT
COMPREHNDE WHAT IS GONE HAPPEN"

-1(2), 0(4),
1(3), 2(1)

Lack of instructions when no explicit target appears. Neutral
sentence but use of upper case letters appear aggressive.

"I already asked. He pretty much told me to stick
my head in a bucket of lava."

-1(6), 0(3),
1(1)

Joke or real attack. Possible lack of context or annotator’s sub-
jective perception.

"What the hell is wrong with this thing ? why are
my changes not showing?"

-2(1), -1(5),
0(3), 1(1)

No target. Annotator’s subjective perception, or lack of in-
structions about sentences without precise target.

Table 3.3: Example sentences from the Jigsaw dataset, whose interpretation is mainly influenced by the annotators’ individual charac-
teristics.

• Add context information to each sentence sample. This context can consist of the surrounding conver-
sation of the sentence, information about the writer or the target of the sentence, ...

• Clarify what toxicity and the different labels ([-2;2] range) are, possibly with examples.

• Give instructions on how to judge extreme cases such as sentences which contain both negative and
positive aspects, sentences without direct target or sentences with self-criticism.

• Adapt psychology questionnaires to the task of judging toxicity in order to aggregate several answers
from each annotator into one judgement (it could give more accurate and consistent judgements in-
stead of asking to rate the toxicity on the [-2;2] scale which is difficult to interpret).

With these restrictions on the crowdsourcing task, especially if we choose to focus on sentences of one specific
type of hate speech, we could aim at reaching less than 30% disagreement since this value is given by most
papers which perform collection of annotation about subjective quality of experience.

3.3.2. Crowdsourcing treatment of the dataset: annotation cleaning, low-quality anno-
tators and annotations removal

In this sub-section, we are interested in crowdsourcing methods to filter out wrong annotations collected
from crowdsourcing tasks. The research sub-question we answer is how to identify and remove low-quality
annotators’ annotations while keeping the valid subjectivities? (RQ1.3) The study of the literature inter-
ested in crowdsourcing result processing (Section 2.5.4) conducts us to formulate an hypothesis concerning
crowdsourcing for subjective properties. The literature is divided into two main directions. On one hand,
certain research recommend to filter annotators during the crowdsourcing task. The crowdsourcing liter-
ature advocates for using several types of questions combined with varied question presentation to check
whether the annotators answer randomly or consistently: gold questions, content questions (which are not
subjective), consistency tests. User monitoring, the use of Amazon Mechanical Turk user scores, the use of
qualification tests are also proposed to filter low quality workers. In the Jigsaw dataset, the workers are filtered
using 10 golden questions and consistency tests over the annotators’ answers. Additional methods could be
used if required to run a new crowdsourcing task. On the other hand, other studies propose to remove the
low quality workers after collecting all the data. To do so, they compute annotators’ scores investigating the
correlations between annotators’ annotations (for example the MOS score [88] or CrowdTruth worker quality
score [43]). When some expert annotations are available, techniques to compare the annotators’ annotations
to the expert ones and eliminate the outliers are also investigated. Considering that we cannot run a new
crowdsourcing task, we focus on the second kind of annotators’ filtering methods. We decide to study the
CrowdTruth framework because 1) it does not require any expert annotation that we do not have, and since
the Jigsaw dataset is large, annotating a sufficient amount of samples would be time-consuming, and 2) it
does not aim at transforming the annotations into one unique label but at harnessing disagreement. The
hypothesis we investigate is:



44 3. Dataset to study sentence toxicity as a subjective property

H3: the CrowdTruth framework enables to filter out the annotators’ annotations of low-quality
while keeping the annotations which correspond to valid judgements different from the majority.

Experimental set-up
To verify the hypothesis, we apply the CrowdTruth framework to our dataset and investigate whether the
CrowdTruth results make sense by comparing the framework’s output scores to our manual evaluation of the
annotations or annotators. The CrowdTruth framework takes as input a set of annotations with the anno-
tators’ identifiers on different samples, and outputs three scores: the Unit Quality Score (UQS), the Worker
Quality Score (WQS), and the Annotation Quality Score (AQS) [44].

For one sample, the UQS is computed as the average cosine similarity between all worker vectors, weighted
by the WQS and AQS. It represents the degree of agreement for each sample. The WQS is computed as the
product of the worker-worker agreement (WWA) and the worker-media unit agreement (WUA), and assigns
one score to each worker measuring the correctness of her annotations. The WWA is the average cosine dis-
tance between the annotations of a worker and all other workers that have worked on the same media units,
weighted by the worker and annotation qualities. The metric gives an indication as to whether there are con-
sistently like-minded workers. This is useful for identifying communities of thought. The WUA is the average
cosine distance between the annotations of a worker and all annotations from the rest of the workers for the
media unit, weighted by the media unit and annotation quality. It calculates how much a worker disagrees
with the crowd on a media unit basis. The AQS is the weighted average with the WQS of the probability that
when an annotator i selects label a for a sample, annotator j selects the same label. It represents the agree-
ment for each label over all the annotations given in the crowdsourcing task.

The Jigsaw dataset is constituted of samples and their annotations on a scale between -2 and 2. This scale
is criticized in the crowdsourcing literature because it might be unclear to the annotators. Consequently, we
apply the CrowdTruth framework to 4 different data set-ups with 4 different scales obtained with 4 differ-
ent label aggregations. For the WQS, we sample from the dataset 30 annotators randomly in the annotators
whose CrowdTruth scores on the binary labels are very low or very high, and we manually compute for each
of them a quality score by averaging the number of their annotations which could be considered correct
(according to our appreciation of the sample) over the total number of annotations they made. Then we
compute the mean-squared error between the WQS that we computed and the CrowdTruth WQS for each
set-up. The smaller the error, the more the CrowdTruth results should highlight the correct or incorrect an-
notations because the manually-computed score simply correspond to the fraction of correct annotations.
To evaluate the UQS, we sample randomly 100 different sentences from the dataset, selecting sentences in
the whole range of CrowdTruth results on the binary labels. For each of them, we give an ambiguity score (0:
ambiguous, 1: non-ambiguous) depending on whether the sentence can be evaluated clearly or whether it is
subject to multiple interpretations. Because we give binary labels to each sample but the results returned by
the framework are continuous between 0 (low-quality unit) and 1 (high-quality unit), we compute the Area
Under the Receiver Operating Characteristic Curve (AUROC) score so that the difference of score type is taken
into account. The higher the score, the more the manual score and the CrowdTruth score are in agreement,
the more the CrowdTruth framework is accurate at identifying more or less ambiguous sentences. We can-
not give a score manually to evaluate each label and compare it to the AQS because it is hard to quantify
how clear each label is. We only qualitatively compare the AQS results with our intuition of the labels. The
mean-squared error and the ROCAUC score are computed on the same data samples for each of the set-ups.

Results
We compute the CrowdTruth scores on the 4 set-ups and report the resulting plots below.

• Set-up 1: 2 labels: -2 and -1 labels are considered as toxic and 0, 1, 2 as non-toxic. (Fig. 3.2)

• Set-up 2: 2 labels: -2, -1 and 0 labels are considered as toxic and 1, 2 as non-toxic. (Fig. 3.3)

• Set-up 3: 3 labels: -2, -1 labels are considered as toxic, 0 as neutral, and 1, 2 as non-toxic. (Fig. 3.4)

• Set-up 4: 5 labels: the -2 to 2 labels are considered separately. (Fig. 3.5)

We observe that for the first set-up (Fig. 3.2), most sentences and most annotators have a high-quality
but that some have lower quality. This is probably because the labels to annotate are easily interpretable and
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(a) Unit Quality Score (b) Worker Quality Score
(c) Annotation Quality Score. -
1(0.609), 0(0.944)

Figure 3.2: Set-up 1. Results of the CrowdTruth metrics with binary labels: (-2, -1) = toxic, (0, 1, 2) = non-toxic. Most annotators and
samples are of high-quality with a long-tail of very low quality samples and annotators.

(a) Unit Quality Score (b) Worker Quality Score
(c) Annotation Quality Score. -
1(0.799), 0(0.427)

Figure 3.3: Set-up 2. Results of the CrowdTruth metrics with binary labels: (-2, -1, 0) = toxic, (1, 2) = non-toxic.

(a) Unit Quality Score (b) Worker Quality Score
(c) Annotation Quality Score. -
1(0.625), 0(0.663), 1(0.455)

Figure 3.4: Set-up 3. Results of the CrowdTruth metrics with three labels: (-2, -1) = toxic, 0 = neutral, (1, 2) = healthy.

(a) Unit Quality Score (b) Worker Quality Score

(c) Annotation Quality Score. -
2(0.337), -1(0.422), 0(0.702), 1(0.395),
2(0.039)

Figure 3.5: Set-up 4. Results of the CrowdTruth metrics with labels between (-2;2). The distributions of UQS and WQS are very different
from the distributions for set-up 1, with lower average UQS and WQS.
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thus there are less errors of annotations. For the other set-ups, the distributions of scores are concentrated
on lower-quality scores, the distributions between set-ups 3 and 4 being of similar shapes, because there are
more errors since the labels are more complex to understand and there are more different perceptions of the
same labels for a same sample.

We report in the Appendix A.1.2 the Wikipedia comments with the lowest and highest UQS calculated for
set-up 0 and set-up 4, and we manually study the annotations of the annotators with the lowest and highest
WQS. We observe that the low-UQS samples with set-up 0 are sentences in foreign languages and sentences
which seem ambiguous about their interpretation, while the high-UQS samples are usually long sentences
which give constructive comments on the Wikipedia articles. With set-up 4, the low-UQS samples are more
difficult to interpret, they do not seem to be more ambiguous than other samples, while the high-UQS sam-
ples are also not very clear compared to the samples returned for set-up 0. For set-up 0, we observe that
low-WQS annotators seem to provide completely random annotations, while the high-WQS annotators have
mostly valid annotations. For set-up 4 the low-WQS annotators behaviours is not always easily differentiable
between spams or simply valid but different judgements.

For the study of the WQS, we compute the following mean-squared errors in the order of the set-ups:
[0.0103, 0.1826, 0.2679, 0.3133]. For the UQS, we find the following AUROC scores in the order of the set-ups:
[0.9452, 0.4792, 0.8607, 0.7906].

Discussion
The WQS and UQS returned for set-up 1 are much closer to our judgement of the workers annotations than
for the other set-up since the error is much lower and the ROCAUC is the highest. Set-up 1 is the most intuitive
to make sense of the possible annotation labels and that explains why the CrowdTruth results are closer to our
judgement of the samples. This supports the idea of selecting its results to filter the annotators’ annotations.
The other set-ups are less close to what we expected for several reasons. The aggregation of the labels in set-
up 2 is not meaningful since we differentiate between toxic and non-toxic samples and neutral is not usually
confused with the toxic label. For the set-ups 3 and 4, there are too many different labels possible and the
annotators cannot identify precisely which ones to use whereas having binary labels make the task clearer.
When applying the CrowdTruth framework on these 3 or 5 labels, there appears to be a higher disagreement
between workers, that we do not take into account since it is not related to the subjectivity of the property to
annotate but only to the difficulty for a human to interpret the labels.

The AQS for set-up 1 exhibits high scores for both types of annotation, with non-toxic being the clearest.
For set-up 2, the scores are a little lower, the toxic label having a higher score than the non-toxic label. For
set-up 3, the scores are slightly decreasing again with the neutral label being the clearer. For set-up 4, the
scores decrease again, the neutral label seems to be very clear to the annotators since the score is very high
compared to the other scores, and the other labels have similar scores. The label very-toxic has very low score,
which means that there is very few agreement over it. This trend in the scores among the different set-ups
supports our previous explanations. The more possible labels there are, the less clear it is for the annotators
and the more disagreement there is, thus the scores decrease. Consequently, we again conclude that the
CrowdTruth results provide sound results over the Jigsaw dataset for our subjective property annotation task.

Although we do not compute the mean-squared error and the ROCAUC scores using all the annotations
in the dataset, we assume that the results are representative of the whole dataset because our observations on
the data themselves also correspond to the evolution of the scores returned by the experiments. The mean-
squared error being very close to 0 and the ROCAUC score being close to 1 for the first set-up, we consider
reasonable to use the CrowdTruth results to eliminate the low-quality annotators’ annotations.

Conclusion
We conclude that hypothesis H3 is verified, we can use the CrowdTruth framework with binary labels to
eliminate the low-quality annotations, by eliminating the annotations of the annotators of low WQS (RQ1.2).

We assume that there are three kinds of annotators whose annotations differ from the majority: 1) spam-
mers who randomly pick labels, 2) annotators which make infrequent mistakes, and 3) annotators whose
interpretations of samples differ from the majority interpretation but still give "correct" labels. To obtain
a dataset of high quality without eliminating the different judgements, we need to remove the first type of
annotators while making sure not to remove the second and third types -or possibly only the wrong anno-
tations for the second type of annotators. In order to select a threshold on the Worker Quality Score to filter
out low quality annotators from the dataset, we manually check the annotators with the lowest scores and
define a threshold from which the annotators seem to be spammers. We identify spammers by annotators
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with completely random-order wrong answers or annotators who always use the same label. The annotators
with a quality score between 0 and 0.5 all seem to give annotations randomly. This can be seen by the fact that
objective sentences receive wrong annotations and the annotations of the surrounding samples in the crowd-
sourcing task are similar (probably the annotators simply always use the same label). This represents around
50 of the annotators out of 4301 (1.16%) and 18000 annotations out of 1598289 (1.13%). Annotators with a
WQS between 0.5 and 0.65 are also using random annotations but not for all the annotations, a majority of an-
notations is correct, so we make the choice not to remove these annotators. There are around 100 annotators
(2.33%) in this category who annotated around 32000 annotations (2.00%). More precise treatment of each
annotation of each annotator should be made later but this can not be realized with the CrowdTruth frame-
work. Annotators with a higher quality score usually correspond to annotators who make very occasional
mistakes, or have some judgements different from the majority, or annotators who do not make mistakes.

The CrowdTruth framework can be used to filter the spammers’ annotations. However it is not possible
to differentiate the annotators who make occasional mistakes from the annotators who express valid judge-
ments but different from the majority, and it is not possible to filter out only the wrong annotations of these
annotators who make occasional mistakes. These points remain to be investigated in future work.

3.4. Highlight of the presence of different subjectivities in a Computer Sci-
ence toxicity dataset

We now verify hypothesis H1 of the chapter from a Computer Science point of view, by investigating whether
the subjectivities highlighted in the psychology literature appear in the available Computer Science datasets
of sentence toxicity. We answer the question: are there different valid judgements in available toxicity
datasets?, with the hypothesis that part of the samples are associated with different valid judgements. We
assume that different valid subjectivities are equal to different valid annotations on one same sample, what
is called "disagreement" in the crowdsourcing literature, and we check for disagreement in the annotations.

3.4.1. Experimental set-up
Disagreement is measured by computing the Average Disagreement Rate (ADR) with the majority vote (MV)
for each annotator. We define the ADR as the number of annotations of an annotator which differ with the
MV labels divided by the total number of annotations of the annotator. It quantifies whether the annota-
tors agree on judgements of data samples because the MV represents the common perception of toxicity on
each sample (calculated as the most frequent annotation for each sample) ; and enables to verify whether
all the annotators follow the same line of thoughts or whether they have different perceptions. We plot the
distribution of ADR over the whole population to check for the disagreement repartition.

Because the wrong annotations of certain annotators could participate in the disagreement measures
without being indications of subjectivities, we remove the wrong annotations with the CrowdTruth frame-
work (Section 3.3.2), and then we study the disagreement in the dataset. Since it is difficult to distinguish
between annotators which give wrong annotations and annotators whose perceptions differ from the MV, we
repeat the process of removing the annotations of the low quality annotators, computing the ADR with the
MV and plotting the ADR distribution, with the annotators of 0 to 0.6 CrowdTruth WQS removed so that we
see whether removing spammers or valid but uncommon judgements has an influence on the disagreement.

3.4.2. Results
The histograms of ADR are computed using the ADR over binary labels (Fig. 3.6) and over the full range of
labels (Fig. 3.7). We also plot the number of annotations removed and the average ADR over the whole dataset
as a function of the minimum Worker Quality Score allowed in the dataset (Fig. 3.8).

For the binary labels, we observe that the more annotations are removed, the more the disagreement
with the MV increases until it stabilizes and reaches a specific distribution with very few annotators always
agreeing with the MV but most annotators only disagreeing around 15% of the time. The CrowdTruth WQS
is computed as a combination of the sentence ambiguity and the disagreement rate of the annotator with
the other annotators. It does not only take into account the disagreement with the majority and that is why
the evolution between the ADR distribution and the number of low quality annotators removed is not linear.
Since many samples are not ambiguous and incorrect annotators are incorrect only for a portion of their
annotations, the more annotators (and their partially correct annotations) there are, the more agreement can
be found, and decreasing the number of annotations make the annotators with slight disagreement appear.
When decreasing the number of annotations, the annotators with very high disagreement are filtered out by
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Figure 3.6: Worker Average Disagreement Rate with the majority after removing 0 to 300 lowest quality workers (Worker Quality Score
between 0 and 0.7). The histograms are normalized, and the labels considered are binary. The more low quality annotators are removed,
the more disagreement with the majority-vote is observed.

Figure 3.7: Worker Average Disagreement Rate with the majority after removing 0 to 300 lowest quality workers (Worker Quality Score
between 0 and 0.7). The histograms are normalized, and the labels considered are within the J−2;2K. Removing low-quality annotators
almost does not influence the distribution of disagreement with the majority-vote.

the framework since they make many mistakes (it is not only that they always have a different opinion on
sentences). This is supported by the plot of the CrowdTruth UQS (Fig. 3.2) which shows that most samples
are non ambiguous and therefore people should not have many opinions which differ with the MV. The plot
of the CrowdTruth framework results (Fig. 3.2) shows that the UQS is high and the WQS follows a distribution
which is similar to our plot of the ADR with the MV, what is a good indication of the validity of the experiments.

For the full range of labels calculations, the histograms remain similar when removing any number of low
quality annotators’ annotations, and the average disagreement is much higher than for the binary labels. This
is explained by the fact that the disagreement is always very high since it is difficult for workers to understand
the difference between the labels such as toxic and very toxic, or healthy and neutral, and these differences
are subjective, so there are several causes of differing perceptions.

3.4.3. Discussion
Since the disagreement has many causes (the labels are not well defined) when studying the full range of
labels, we prefer studying the results on the binary labels which diminish the sources of the variations in
the perceptions of toxicity. With the binary labels and approximately 50 low quality annotators removed,
we obtained a stable ADR distribution with only a small percentage of workers who always agree with the
MV. This proves that the Jigsaw dataset present different subjectivities since all the other annotators partly
disagree with the MV and thus disagree among each other.

With the binary labels, only 10.5% of the annotators (around 400 annotators) always agree with the MV
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Figure 3.8: Average Average Disagreement Rate and number of annotators removed as a function of the minimum Worker Quality Score
(WQS) allowed in the dataset. The average ADR computed on the available set of annotators with the binary labels is 5 times lower than
with the 5 labels. The number of low-quality annotators removed as a function of the annotators’ quality follows a similar curve as the
number of annotations removed as a function of the quality of the annotators of these annotations, but with different steepening of the
curves. The more low-quality annotators are removed, the lower is the average ADR of the available annotators.

for 50 or more low quality annotators removed. This shows that MV annotation aggregation is not represen-
tative of most individuals’ line of thoughts but only of a sentence-level common opinion (the majority vote).
Therefore current algorithms which are trained to output this MV are unfair towards most people since they
are not in par with their line of thoughts. This supports our claim that the Jigsaw dataset is adapted to study
the fairness of the prediction of subjective properties.

From this analysis, we additionally conclude that to study the subjective character of toxicity, it is impor-
tant to remove at least the 50 lowest quality annotators (the spammers) and their annotations. Otherwise a
majority of annotators seem to agree with the MV, what hides the unfairness of the true data. Besides, remov-
ing only 50 annotators among the lowest-quality annotators enables to keep the ones which disagree very
often with the MV but express their true opinions and do not make many mistakes.

3.4.4. Conclusions
From the literature and the previous experiments, we conclude that sentence toxicity is a subjective prop-
erty, and that the Jigsaw dataset enables to study the effects of the presence of different subjectivities on the
fairness of datasets and Machine Learning models, with certain pre-requisites and limitations (RQ1.1). Thus
hypothesis H1 is verified: sentence toxicity is a valid use-case to study the prediction of subjective properties.
Choosing a subjective property such as sentence toxicity, with an available Computer Science dataset which
exhibits disagreement between annotators, are the main requirements to investigate the fairness of datasets
and Machine Learning models made to predict subjective properties.

With the Jigsaw dataset, we identified that around 51% of the annotators (around 2500 annotators) dis-
agree 15% of the time with the majority vote, 34% of the annotators (1445 annotators) disagree 20% of the
time, and 4.5% of the annotators (192 annotators) disagree more than 20% of the time. A Machine Learning
model which would be trained on the majority vote labels resulting from the aggregation of the annotations,
assuming that its accuracy is very high, would consequently give predictions which would suit the line of
thoughts of at most 10% of its users. That could be considered unfair towards the rest of the users, and that
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shows the necessity of further studying unfairness of the predictions of Machine Learning systems.
The low quality annotators’ annotations should be removed from the dataset to make the different sub-

jectivities more obvious. In the Jigsaw dataset, the disagreement among annotators is partly due to these
subjectivities but also to the lack of context information about the sentences. In our work we are forced to
confuse these two causes of disagreement and cannot distinguish them in the study of unfairness. However,
future work could make sure to remove this second source of ambiguity and consequently of disagreement.

3.5. Clustering data for crowdsourcing cost-reduction
In order to create a dataset of sentences and judgements of perception of toxicity, which is large enough to
train Deep Learning algorithms, we cannot hope to obtain crowdsourcing results of high quality on the full
dataset because performing the crowdsourcing task enough times would be too expensive. The number of
samples to annotate is too large to keep the cost of the crowdsourcing task low, and so we cannot have the full
dataset annotated. That is why we attempt to answer the third sub-question: how to collect crowdsourcing
annotations on a large dataset while maintaining a low cost?. We hypothesize that:

H4: automatically clustering data based on the sentence properties, annotating the cluster centroids
and propagating the annotations to the rest of the cluster provide accurate labels for the dataset.

This hypothesis is divided in three cases: 1) the clusters each reflect different toxicity judgements; 2) the
clusters are more or less homogeneous on the toxicity judgements and only homogeneous clusters should
be annotated; 3) the clusters reflect different types of sentences whose toxicity interpretation is more or less
ambiguous and consequently more or less annotations per cluster or centroid should be collected.

3.5.1. Experimental set-up
To test the hypothesis, we run different clustering algorithms on our dataset, and investigate whether the
clusters have a human-interpretable meaning different from only sentence properties, that is they reflect one
of the three cited cases above.

Data preparation. First we clean the available data. We turn all the letters into lower case letters and
remove all the formatting elements which could be in the sentences. We perform tokenization and remove
all the English stop words. Then we encode the sentences. We experiment with two types of features. First we
use the term frequency–inverse document frequency (TFIDF) computed over each sample. The second type
of features is the Paragraph Vector representation of sentences. It was introduced by Le et. al. [69], with the
idea that common feature representations of text lose the information about the order of words, while this
information might be useful for further use in other algorithms. We train this representation with our whole
corpus of sentences, using the python implementation Doc2Vec of the gensim library 3.

Training of the K-Means algorithms. We train the K-Means algorithm over the dataset, using between
1 and 30 clusters for the value of K. We perform different measurements (both intrinsic metrics and metrics
using the binary and true labels of the samples) and plot these measurements as a function of K, in order to
determine the optimal K (Fig. 3.9, 3.10). It seems that a K between 2 and 5 is sufficient.

Figure 3.9: Search of the optimal K for the K-means algorithm. Computed for the TFIDF features. The completeness and Calinski-
Harabaz indices show a clear change of the curve slope for a number of clusters K equal to respectively 2 and 3.

3https://radimrehurek.com/gensim/models/doc2vec.html
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Figure 3.10: Search of the optimal K for the K-means algorithm. Computed for the Paragraph Vector features. All the scores exhibit a
clear slope change for a number of clusters K equal to a value between 3 and 5.

Evaluation of the clustering algorithms. For each cluster, we collect separately for each demographic cat-
egory the annotations corresponding to the sentences in the cluster, and aggregate the annotations into the
majority-vote (binary label) per demographic category. Then we compute the mean and standard deviation
over these aggregated labels. The mean enables to compare whether the labels are similar among different
demographics inside a cluster. The closer to 0 or 1 the mean is, the more all the labels in the set are similar.
The standard deviation enables to compare whether the labels among annotators of a demographic category
in one cluster are similar. Consequently we can observe whether the clusters’ annotations are homogeneous
or not.

3.5.2. Results and discussion about the clustering algorithm
The results are plotted in similar plots as Fig. 3.11 for the TFIDF features. We can see that the values are
consistent among the different demographic categories.

Figure 3.11: Results of the clustering algorithms with the TFIDF features. Clustering with K = 5
The categories of population are from bottom to top most to less frequent in the dataset. Most demographic category exhibit similar
mean and standard deviation within a same cluster: a same number of annotations per category would have to be collected.
The values are different across clusters with more (clusters 1 and 4) or less (clusters 0 and 2) homogeneity in the annotations of each
demographic category. Possibly more or less annotations should be collected for the samples of the different clusters.
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For the TFIDF features, there is few difference between the results on the majority vote and on the density
estimated labels. The clusters are quite homogeneous with a standard deviation around 0.3, each of the
clusters having similar standard deviations. They do not enable to identify the clusters for which the labels
would be all the same for one category of population since the most frequent demographics categories (with
the most data samples at the bottom of the y-axis) have a standard deviation of approximately 0.2 to 0.45
which indicates that the two types of labels (positive and negative classes) exist in the clusters.

The Paragraph Vector features result in larger value differences in-between the clusters with a standard
deviation between 0 and 0.5 for different clusters when using 5 clusters. When increasing the number of
clusters, the differences between the clusters increase. The clusters with a standard deviation around 0.5 can
be used to indicate the samples on which to collect many data. The clusters with smaller standard deviation
would correspond to samples which all have the same label and therefore only few annotations on few of
these samples could be asked. However, for these clusters the standard deviation remains still quite high
(around 0.2) and therefore it might not be accurate to use only one label for these clusters.

3.5.3. Conclusions
In conclusion, we consider that the third case of the hypothesis H4 is verified. A few clusters seem homo-
geneous over the label for specific demographic categories and thus few of the samples can be annotated
in these clusters by these categories. A larger number of clusters have a higher standard deviation, in these
ones each sample is annotated differently, and consequently they would require more annotations by a same
demographic population.

Since there are many more non-homogeneous clusters, the clustering algorithm combined with the fea-
tures that we use do not seem adapted for the selection of a few samples to annotate. (RQ1.3) However, future
work could consist in investigating whether it is possible to set different minimum numbers of annotations
to collect for different clusters by different demographic population, in order to obtain a set of annotations
large enough to represent all the different possible valid judgements of the samples. Possibly we could order
the clusters by standard deviation values, and study how the number of annotations per cluster type influ-
ence the performance of the trained models with these datasets. We project that there would be a trade-off
between model’s performance and number of annotations. This study could enable to define a threshold on
the number of annotations per cluster type, or a relationship between this number and the performance of
the models, in order to obtain performance as allowed by the trade-off.

3.6. Summary
In this section we investigated three aspects of the collection of annotations via crowdsourcing to create
datasets of subjective properties used to train Machine Learning algorithms for the automatic classification
of data samples on subjective properties.

First we verified that sentence toxicity is a valid use-case for the study of the creation of these datasets by
reviewing the psychology literature about sentence toxicity and analysing the disagreement in an available
Computer Science dataset of sentence toxicity. (RQ1.1)

Then we focused on how to collect high-quality annotations of subjective properties and identified the
current limitations of crowdsourcing techniques. We gave a list of recommendations for the crowdsourc-
ing task design, and pointed out that the use of questionnaires inspired from the psychology literature would
merit being investigated to collect high-quality annotations. Furthermore we investigated whether the CrowdTruth
framework is applicable to crowdsourcing tasks of subjective properties. We showed that although the frame-
work is usable to eliminate spammers’ annotations among the annotations of all the annotators, it does not
enable to distinguish the incorrect annotations from the valid annotations which are different from the judge-
ment of the majority on a sample. Thus we concluded that a future work’s interest could be to propose new
methods for the filtering of annotations of subjective properties. (RQ1.2) This constitutes contribution 3).

Finally, because the Machine Learning algorithms require many data to be trained on, we attempted to
propose unsupervised clustering methods of data samples to reduce the amount of data to annotate and con-
sequently to decrease the cost of dataset annotations’ collection via crowdsourcing. (RQ1.3) However these
propositions did not lead to satisfactory results and that is why we identify the following research direction
for future work: how to collect crowdsourcing annotations of subjective properties on a large dataset while
maintaining a low cost?
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Method to evaluate algorithmic fairness for

subjective properties classification

4.1. Introduction
In this chapter, we investigate the second research question RQ2: how to evaluate algorithms’ fairness when
predicting subjective properties? The aim is to find an objective and quantitative way to measure fairness of
algorithms related to our task of predicting subjective properties of samples, which means predicting proper-
ties for which one unique judgement does not exist but different persons would have different interpretations
of one unique sample. In order to do so, we divide the question into several sub-questions.

1. How to define algorithmic fairness when predicting subjective properties? (RQ2.1)
→ We review the literature about bias and fairness of Machine Learning algorithms and adapt previ-
ous definitions to the specific case of algorithms made to predict subjective properties. The proposed
definition is based on equality of the algorithms’ performance for each user.

2. How to characterize possible unfairness of the algorithms when predicting subjective properties? (RQ2.2)
→ We define a set of possible clustering criteria on which to divide the dataset and performance metrics
to measure the performance of the algorithm on each subset of the dataset. After defining different al-
gorithms with different expected fairness-related behaviours, we check whether the clustering criteria
and performance metrics enable to exhibit the expected fairness-related behaviour of each algorithm.
We propose to cluster the dataset on an annotation, annotator or sample level, and measure true posi-
tive and true negative rates.

3. How to translate the fairness characterizations into a fairness measure? (RQ2.3)
→ We propose metrics which summarize the previous characterizations, apply them to the different
algorithms and verify whether they return significant results. We decide to compute the standard devi-
ation of true positive and negative rates across data clusters.

After defining what algorithmic fairness is for the classification of subjective properties, we need to find
ways to observe potential unfairness and to summarize the observations into values. For this, we propose
several characterizations of unfairness (Section 4.3) and then several computations to sum them up (Sec-
tion 4.4). At the end of the chapter, we answer the main question by selecting one of these computations as a
method to evaluate algorithmic fairness. This is our second contribution of the thesis.

4.2. Definition of algorithmic fairness, necessity to propose new metrics
In this section, we answer the first question: how to define algorithmic fairness when predicting subjective
properties? (RQ2.1) To define what fairness is for our task of predicting subjective properties, we investigate
the literature about Fairness, Accountability and Transparency of ML algorithms, and adapt our findings to
the task. Additionally we look at the Machine Learning literature to define which metrics are usually em-
ployed to evaluate algorithms, and investigate whether they can be used to measure algorithmic fairness.

53
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4.2.1. Definition of algorithmic fairness for classification of subjective properties
Fairness in the literature
According to our literature review (Section 2.4), there are multiple definitions of fairness in the literature, but
they all refer to possible discriminations between groups of people. For example a popular mathematical def-
inition of fairness is the error rate parity, saying that for an algorithm to be fair the false positive rates should
be equal across groups of people. These definitions are motivated by the fact that the algorithms directly
or indirectly make use of protected properties characterizing the persons who are classified to classify them
according to one criteria, such as classifying between people who will commit a crime or not or classifying
between people to whom a bank should or not give a credit.

We do not aim at classifying people, but sentences depending on both the sentences’ and people’s prop-
erties - we classify sentences conditioned on people. The aim of our task and its impact are different. In
the other papers the outcomes of the algorithms’ outputs can be harmful to certain people and categories
of people since people are defined by a set of properties which make them member of a category. Thus it is
possible to talk about a potential discriminative power. In our task we might not only use sets of properties to
distinguish between people but also user-specific identifiers and we do not aim at creating algorithms which
generalize over categories of population but we aim at algorithms with different outputs for each different
user. Thus there might be discrimination if we put the users into categories to evaluate the algorithms and
we find inequalities, but these "discriminations" would not be harmful to the population categories directly,
and this way of analysing the algorithms would not be justified since it does not make sense to categorize the
users by their protected properties only.

Binns et al. [13] analyse the fairness of their algorithms to predict toxicity on the Jigsaw dataset. Although
they use a traditional definition of fairness measuring the accuracy differences of the algorithm to predict the
majority-vote for different categories of population (male or female), they note one limit of their approach.
Taking the majority-vote as ground truth for each category of population they define is not representative
of the opinion of each member of the population, and thus their measure of fairness for the categories of
population is itself not fair towards each member of the category. This is another research which supports
our idea not to define fairness as the discriminative impact of algorithms.

From these observations, we claim that we can not use the traditional definitions of algorithmic fairness
to evaluate the fairness of our algorithms, but that we must propose a new definition which is directly related
to the task of predicting subjective properties.

Fairness related to our task
A danger with current Web systems is the filter bubble because it represents a threat to democracy since the
opinion of the minorities remains unheard [15]. That is why the objective of our work is to predict subjec-
tive properties accurately, which means that we want to predict how each user would judge each sentence’s
toxicity instead of predicting the majority vote only. An unfair algorithm would be an algorithm for which
the prediction accuracy would not be equal for each user, but which would return only the opinions of the
majority or of certain groups in the population.

We propose to orient our definition of algorithmic fairness towards the following direction: fairness is
when an algorithm returns accurate predictions on samples for each user, disregarding whether the user’s opin-
ions are part of the minority or majority. This generalizes over previous definitions which focused on discrim-
ination towards protected categories of population. The definition (RQ2.1) we choose is:

Definition: fairness is when an algorithms’ prediction performance are equal for each user.

That means that each user sees his/her opinions taken into account. If an algorithm is 100% fair, it will
predict accurately for each sample and each user the judgement (annotation) that the specific user would
make on the sample. When mentioning prediction performance, we do not refer to structural performance
such as the speed or the memory of the algorithms, but to performance related to the accuracy of the outputs
compared to the ground truth.

To additionally investigate whether our algorithms are discriminative towards certain categories of popu-
lation, we use a second definition of fairness related to the protected features. The algorithm is discrimination-
related fair if its prediction performance are equal for each category of population defined by every possi-
ble combination of protected features’ values.
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4.2.2. On the necessity of creating an adapted fairness evaluation method
Here, we show that it is necessary to propose a new algorithmic fairness evaluation method. As pointed out
in the literature review (Section 2.4), usual methods to evaluate algorithms might exhibit high performance
but hide biases in the outputs. We verify that it is the case for our task, making the hypothesis that traditional
methods to evaluate algorithms’ efficiency performance do not account for algorithmic fairness.

From the literature review about Machine Learning algorithms for toxicity prediction (Section 2.2), we
constitute a list of metrics usually used to evaluate the algorithms: precision, recall, F1-score, accuracy, Area
Under the Curve, Spearman correlation, and confusion matrix to distinguish between each class. These met-
rics serve to compute a performance score of the algorithms, which is considered as their evaluation. We
verify whether these evaluations give indications about algorithmic fairness.

• The accuracy is the ratio of the number of correctly classified instances over the total number of tested
instances.

• The Area Under the Curve (AUC) is the area under the Receiver Operator Characteristic (ROC) curve
which is the plot of the true positive rate (TPR) against the false positive rate (FPR) at various prediction
probability threshold settings. Contrary to the accuracy, it enables to take into account the possible
imbalance of classes to evaluate the performances of the algorithm.

• The Spearman correlation measures the strength and direction of association between two ranked
variables1. We compute it between our targeted labels and the predicted labels from the algorithms.

The formula is the following:
∑

i (xi−x̄)(yi−ȳ)p∑
i (xi−x̄)2 ∑

i (yi−ȳ)2
, with x and y the two ordered variables we study.

• The precision is the ratio of true positive over the total number of instances predicted as positive.

• The recall is the ratio of true positive over the total number of positive instances.

• The F1-score combines both the precision and recall: 2∗ pr eci si on∗r ecal l
pr eci si on+r ecal l .

Experimental set-up
We set-up four different Machine Learning models for which we expect to observe different fairness-related
behaviours and apply the usual evaluation metrics to them. We study whether these behaviours are observ-
able with these evaluation metrics. The four Machine Learning models on which to make the observations
are summarized in Table 4.1 with the number of the models. There are 2 dimensions of the models which
make their expected behaviours change: the classifier’s architecture and the training data. The classifiers’
architectures are the following:

• Traditional ML: The traditional Machine Learning algorithms for which the inputs are sentence sam-
ples and the outputs are toxicity labels.

• Input-augmented ML: The traditional algorithms whose inputs are augmented with demographic in-
formation about the readers of the sentences. The outputs are also toxicity labels. The demographics
are encoded in two different ways (continuous or one-hot encodings, explained in Chapter 5).

• User-specific ML: Algorithms which have reader-specific entities: they distinguish between known
users by learning user-specific parameters.

The training data are divided into three main categories:

• MV data: The dataset is constituted of samples and their majority-vote (MV).

• Disaggregated data: The dataset is constituted of samples and their annotations (identical samples
appear several times in the dataset with different corresponding annotations).

• User-specific data: The dataset is constituted of samples, their annotations and their annotators’ in-
formation (annotator identifier, and demographics informations).

We expect that the models made for distinguishing between annotators trained with adapted datasets
(models 3 and 4) are fairer because a completely fair algorithm should return the individual annotations of
each annotator instead of aggregated labels -what models 3 and 4 should be better at doing.

1https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php

https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
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ML / data MV disaggregated user-specific

traditional ML 1 2 NA
input-augmented ML NA NA 3.1 (continuous representation)
input-augmented ML NA NA 3.2 (one-hot representation)

user-specific ML NA NA 4

Table 4.1: The different models on which to make the observations

Results, discussion and conclusions
We evaluate the models with the above cited evaluation metrics. The algorithm evaluated here is a simple
classifier, the Logistic Regression, because it is fast to train and test. Other algorithms should lead to similar
observations since their general behaviour is the same. Since we can make similar observations for each of
these metrics, we only report in Table 4.2 the results concerning the accuracy and F1-score computed on test
data where annotators’ information are available.

model F1-score accuracy accuracy positive class accuracy negative class

(1) 0.6644 0.6885 0.6164 0.7607
(2) 0.6663 0.6897 0.6194 0.7600

(3.1) 0.6740 0.6899 0.6410 0.6899
(3.2) 0.6727 0.6892 0.6387 0.7398

Table 4.2: Efficiency performance of the models on the ambiguity balanced dataset. Along rows: the different training models, along the
columns: the different evaluation metrics. The performance measures are similar for the four models, whereas they are expected to have
different levels of fairness.

We observe that for each column, the accuracy and F1-score measures are similar whereas the models are
expected to behave differently. For example, it is expected that configuration (3) should have higher accura-
cies than the others on the disaggregated dataset but the results do not show this. This has two explanations:
the test dataset is unbalanced with few sentences which have different associated opinions so the use of
a complex algorithm does not change the output performance ; or the performance over a certain type of
samples decrease while the performance on another type increase, what hides potential changes in the be-
haviours of the models. From Chapter 3, we know that there are different subjectivities in the dataset and
thus the first explanation does not hold, but the second does.

This is an indication that using traditional metrics is not meaningful to investigate algorithmic fairness
for the prediction of the different subjectivities because these metrics average over the whole test dataset,
whereas the samples with differing opinions do not constitute the whole dataset and so the performance
differences over these samples are not clear in the evaluation. Therefore, our hypothesis is verified: usual
evaluation methods of algorithm performance are not adapted to evaluate algorithmic fairness.

4.3. Characterization of algorithmic fairness
Usual evaluation methods do not enable to observe potential unfairness and understand it, so we focus on:
how to characterize possible unfairness of the algorithms? (RQ2.2) We make several hypotheses to charac-
terize algorithmic fairness. For that we list the behaviours that Machine Learning classifiers made or not to
resolve unfairness should exhibit so that we have a list of properties that a fairness metric should transmit.
We list possible test set splitting criteria, that we hypothesize should enable to observe the behaviours (char-
acterization hypotheses). We apply these characterization hypotheses to our trained algorithms to evaluate
whether they enable to exhibit the previously listed properties. The characterizations which are meaningful
and human-interpretable are the foundations to propose evaluation metrics in the next section.

4.3.1. Formulation of fairness-characterization hypotheses
List of the expected behaviours of the Machine Learning models
Algorithmic fairness corresponds to performance equality on the user level. Accurate predictions correspond
to the judgements of each user (the annotations of each annotator in our case). A 100% accurate model is also
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a 100% fair model but a 100% fair model does not imply a 100% accurate model because its prediction per-
formance could be very low (low accuracy) but equal (high fairness) for each user. Considering a model fair
and accurate when each annotation is correctly returned, algorithmic fairness can be studied from different
angles. An unfair model returns incorrect annotations for certain users and consequently for certain sam-
ples, thus the annotation-level and sample-level study of the algorithm predictions might give indications of
the potential causes of unfairness. We list the behaviours that we expect the four previously introduced Ma-
chine Learning models (Table 4.1) to exhibit, divided into four classes depending on what aspect of fairness
is investigated (user-, sample-, annotation-, or discrimination- related fairness). For the interested reader, in
Appendix B.1 can be found the detailed list of expected behaviours.

Models (1) and (2) are respectively trained on the aggregated labels by majority voting (MV) and on all
the annotations, and both are not able to make any distinction between the different annotators of the data.
Consequently, we expect them to output predictions which correspond to the opinion of the majority. That
is, they would perform better for annotators who often agree with the MV, for annotations which correspond
to the MV, and for samples whose annotations present high-agreement (most of the annotations are equal to
the MV), compared to data corresponding to low consensus (with few agreement and consequently different
from the MV). Thus, these two models are expected to be mostly unfair on the user, sample and annotation
levels. The analysis of the dataset (Appendix A.2) showed that the quantities of data of low or high consensus
are similar across all the demographic categories, and consequently these models which do not distinguish
between the categories should be fair on a discrimination-level.

Models (3) and (4) are expected to output predictions which more often correspond to the exact annota-
tions of each annotator instead of the MV. Consequently they should be fairer than models (1) and (2), but
not 100% fair because there are not enough training data and not enough known features describing each
annotator in order to learn the line of thoughts of each annotator. On the discrimination-level, model (3) is
expected to be less fair than the others because it will learn distinctions between demographic categories with
different accuracies depending on whether there are many or few training data corresponding to each cate-
gory and consequently its performance will be unequal between categories. Model (4) should be fairer on this
aspect since the performance of its predictions should not depend directly on the demographic categories.

Formulation of hypotheses
We propose possible ways to check whether these behaviours hold when evaluating the models. First we
define several scores to compute on the data in the dataset, that we use in the chapter.

• Annotators’ average agreement rate with the majority vote (ADR) score: general disagreement of one
selected annotator with the majority vote, computed as the number of annotations of the annotator
which differ from the MV labels divided by the total number of annotations of the annotator.

• Sentence ambiguity (AS) score: disagreement of the annotators on the label of the selected sentence,
computed as the number of identical annotations divided by the total number of annotations for the
sentence.

• Annotation popularity (AP) score: disagreement of one selected annotation with the other annotations
of a sample, computed as the percentage of a sample’s annotations which are in agreement with the
annotation.

We formulate the following hypotheses.

H1: Comparing the performance of the model for each user shows whether the model is fair or not.

Indeed, if the performance are different, the definition of algorithmic fairness is invalidated.

H2: Clustering the test data into several clusters and computing the efficiency performance for each
cluster enable to account for different algorithmic fairness aspects.

Comparing the performance of the model on an annotation, user or sample-level would not explain any
possible cause of unfairness, whereas clustering annotations, users or samples according to an interpretable
criterion and comparing the cluster performance would. We hypothesise that the following clustering criteria
should enable to highlight potential causes of unfairness:
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• User clustering criteria:

– The workers’ average agreement rate with the majority vote (ADR): differences of performance
between these clusters would help explain the unfairness. We expect a linear increase of perfor-
mance for clusters with low to high disagreement workers.

– The CrowdTruth Worker Quality Score (WQS): this score partly represents the disagreement be-
tween workers so we expect the same behaviours as for the previous clustering criteria.

– The demographic categories: should show whether the models are discriminative.

• Sample clustering criteria:

– The sentence ambiguity (AS): we expect low ambiguity sentences to receive higher performances
since their annotations would be closer to the majority vote.

– The sentence Unit Quality Score of CrowdTruth (UQS): this score is also made to represent sen-
tence ambiguity thus we expect the same observations as for the above clustering criteria.

• Annotation clustering criteria: The annotation popularity (AP): we expect the annotations which are
less popular (minority opinion) to have lower performance.

H3: Different performance metrics make the potential unfairness more or less observable.

The traditional algorithm evaluation metrics usually exhibit different aspects of algorithmic performance
and therefore they should also influence the observed behaviours about fairness.

4.3.2. Experimental set-up
We apply the proposed evaluations on models (1) to (3) and verify whether the expected behaviours are ob-
served. We separate the dataset into clusters with the different clustering criteria, compute the usual evalua-
tion metrics on these clusters, and check whether the results enable to make interpretations about fairness of
the models. After selecting only the most meaningful characterizations (details in Appendix B), we focus on
the analysis and exploitation of the retained characterizations with the accuracy and F1-score. We only study
the differences between models (1) and (3) because models (1) and (2) have similar behaviours.

We plot on a same heatmap the performance of the different models to have an identical scale to compare
them. To investigate the accuracy, we not only cluster the samples or users or annotations according to the
previously defined criteria, but also according to the binary toxicity judgement that each user gave. This is
equivalent to computing the true positive and true negative rates over the annotations inside the clusters. It
enables to judge whether one label is more easily predicted than the other. It is not possible to do the same
with the F1-score because it requires both classes to be computed.

4.3.3. Results and discussions
H1, H3: Fairness at the user level The distributions of the performance of models (1) and (3) for each
user are reported in Fig. 4.1. We observe inequalities in the treatment of the different users with many users
having very low or very high accuracy performance, the F1-score presents in majority low performance. This
representation gives an indication about the fairness of the models: a fair model would be constituted of a
unique-bar histogram while an unfair algorithm shows several bars of performance for different users. This
characterization however does not enable to find out about the possible causes of unfairness.

The performance distribution over the samples is reported in Fig. B.2. The total accuracy distribution is
almost linear with more sentences with a high accuracy prediction rate. Computing the distribution only on
the positive or negative classes returns different types of results, mainly with similar number of sentences
with 100% or 0% accuracy. This representation enables to compare whether the sentences receive equal
performance, what is not the case here.However it does not give any indication to understand and check for
the causes of the potential unfairness.

The user- and sample- performance distributions are highly dependent on the performance metric used
and sensitive to the dataset employed to compute them. The distributions are affected by the test dataset
constitution since datasets containing few or many hard to classify sentences would show very different dis-
tributions. Therefore, although the distributions show whether the algorithm is fair towards each user, this
evaluation depends on the dataset and cannot be used to compare models evaluated on different datasets.
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(a) Global accuracy (b) Accuracy for the negative class.

(c) Accuracy for the positive class. (d) Global F1-score.

Figure 4.1: Distribution of the performance of the predictions per user, evaluated with several performance metrics. Comparison of
models (1) (in red named "A-no") and (3) (in green named "D-cont").
On each plot, several bars are present: different annotators receive predictions of different performance. Model (1) shows slightly higher
bars corresponding to low-performance than model (3), but the comparison is not clear.

H2, H3: Performance on clusters A detailed description of the results is given in Appendix B.2.2. Cluster-
ing on the user level with the ADR score, the WQS or the demographic categories and computing the perfor-
mance on the clusters enables to observe the expected behaviours of the models. The same procedure on the
annotation-level leads to the same observations, the behaviours are observed more clearly when computing
the accuracy separately on the positive and negative classes than with the average accuracy. The same proce-
dure on the sample level (AS or UQS scores) also shows the expected behaviours, however the performance
trend across clusters is not as linear as expected. The lowest consensus data show very low performance even
with model (3), probably because there are not enough data to learn the exact annotations.

An example characterization is given in Fig. 4.2. The horizontal separations correspond to different clus-
ters of data depending on the values of the ADR score (reported on the y-axis), and the vertical separations
to the evaluations of different models on the positive and negative classes. Each cell correspond to the accu-
racy of one model on one cluster. For the accuracy over the two classes, it confirms that high consensus data
(bottom cells) receive higher performance predictions than low consensus data (top cells), and that model (1)
performs with lower performance than model (3) on medium-consensus data (middle cells). That enables to
conclude about the relative fairness of the models: model (3) is fairer than model (1) since its performance
are more equal across clusters. For the accuracy on the two classes separately, model (1) seems to perform
better. The chosen characterization should depend on which performance metric to focus on.

4.3.4. Conclusions
We discuss whether the different hypotheses are verified.

H1. Plotting the distribution of the model performance for each user shows performance inequality be-
tween users and thus shows unfairness in the model. However, no clear difference between the models ap-
pears, and the distributions are dependent on the constitution of the test set. Thus hypothesis H1 is verified
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(a) Characterization using the accuracy.
(b) Characterization with the true positive and true nega-
tive rates (separate accuracy on the two classes).

Figure 4.2: Visualization of the accuracy, and of the true negative and positive rates (class 0: non-toxic, class 1: toxic) based on the ADR
clustering criteria (intervals reported on the y-axis). Comparison of models (1) and (3).
Model (3) performs better than model (1) on data of very low consensus (0.13 to 0.39 ADR) and of high-consensus (0 to 0.23 ADR)
according to the accuracy values. These observations are inversed for the true positive rate.
The performance metric used changes the observations: it should be chosen depending on the aim of the model (optimization of the
accuracy or of the true positive rate).

but it does not seem to be a convenient characterization to create a fairness evaluation metric.
H2. The different clustering criteria proposed on the different levels enable to highlight different causes

or explanations of unfairness: hypothesis H2 is verified. We select four criteria whose interpretations do
not overlap: on the user-level 1) the workers’ average disagreement rate with the majority vote, 2) and the
demographics categories ; on the sample-level 3) the sentence ambiguity ; on the annotation-level 4) the
annotation popularity. We select these criteria over the CrowdTruth UQS and WQS because the resulting
characterizations are similar but the selected criteria are faster to compute than the CrowdTruth scores.

H3. Hypothesis H3 is verified since different metrics gave different interpretations of the models (RQ2.2).
We decide to work on the accuracy metric since it is the easiest metric to interpret and on the F1-score, so that
we can compare the results of the two metrics. In order to get meaningful information about the accuracy in
case the test dataset is unbalanced over classes, we decide to compute the accuracy separately on the positive
and negative classes (true positive and true negative rates).

We conclude that algorithmic fairness can be characterized on several levels which explain different causes
of unfairness. To highlight the fair or unfair character of a model, the annotations of the evaluation set can be
clustered according to criteria depending on the level on which to focus, and the performance of the model
on each cluster should be compared to identify potential inequalities.

4.4. Metrics for fairness evaluation
We now answer (RQ2.3): how to translate the fairness characterizations into a fairness measure? The char-
acterizations show different aspects of unfairness of the predictions of the models, thus we propose different
metrics based on them, experiment on the different parameters of the metrics and evaluate their significance
on our models. We conclude on a final choice of metrics to evaluate fairness.

4.4.1. Formulation of hypotheses
Requirements for a new fairness metric
The algorithmic fairness metric should return a score computed for each algorithm to be evaluated. We list
the properties that the fairness value should respect:

1. The metric gives an indication about the fairness of the Machine Learning models.

2. The metric gives an indication about the causes of potential unfairness.

3. The metric also gives an indication about the global performance of the algorithms. If not, an algo-
rithm with low but equal performance for each user would be seen as highly fair while the algorithm is
fair but is also completely inefficient.
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4. The metric is independent of the dataset on which it is evaluated. In this way, algorithms evaluated on
different datasets would still be comparable.

Proposition of different metrics
Based on these requirements and the previously proposed characterizations, we formulate hypotheses on the
possible way to evaluate algorithmic fairness.

Requirement 1. Previous section showed that the metric can not be an average over the whole dataset
since the dataset constitution biases the computation, what is against requirement 4. For example a model
evaluated on an unbalanced dataset with many high-agreement samples would exhibit a high accuracy since
it is able to return the majority-vote, while a dataset with a majority of low-agreement samples would lead
to low accuracy. The previously proposed characterizations mainly consist in dividing the dataset into clus-
ters, computing the average algorithm performance per cluster, and comparing the algorithmic performance
between clusters. We can quantify the dispersion between the values of each cluster to account for the compar-
ison. If the clusters’ properties are identical across datasets, the performance values should be comparable.
Considering that our definition of fairness is equality of performance across users, we hypothesize that:

H1: Main fairness indicator: quantifying the dispersion between the performance of the clusters with
the user-level clustering over the average disagreement rate with the majority vote serves as the main
measure of fairness (requirement 1).

Requirement 2. The values obtained with the other clustering criteria of the selected characterizations
would be secondary measures to explain potential unfairness.

H2: Side aspects of unfairness: we could interpret unfairness based on inequality of certain properties
of the users (demographics for discrimination-related fairness), samples (ambiguity of the sentence)
or annotations (popularity of the annotations).

To measure the gap between the different clusters, we propose to

H3: Cluster dispersion: compute the standard deviation across the performance values associated
to each cluster, or to compute the range (absolute value) between the highest and lowest performing
clusters (requirement 2)

Requirement 3. We need to give one measurement of the performance of the model. However, like the
previous considerations, we can not compute the accuracy performance over the whole dataset since it is not
independent of the test set (against requirement 4). We propose to report the:

H4: General performance: average performance across the performance of the different clusters, or
the lowest performance among all the clusters’ performance (requirement 3).

For all these hypotheses, the performance metric on which the computations are based is the:

H5: Performance metric: F1-score or the average between the true positive and true negative rates
dispersions and general performance.

Requirement 4. Different datasets comport different ranges of values of the clustering criteria and so the
constitution of clusters is different across datasets. Small datasets would not enable to compute the perfor-
mance over the whole range of clusters and the fairness values would be biased towards the properties of the
available clusters (low performance if the clusters corresponding to easily-predicted high-agreement data are
missing, or conversely high performance if low-agreement clusters are missing). To counter this, the datasets
to evaluate algorithmic fairness should fulfil minimum requirements such as a minimum number of data to
form each cluster, or:

H6: Dataset: The computations could be spanned over different ranges of clusters.
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Instead of computing the metrics over all the clusters spanning over the whole range of values the clus-
tering criteria can take, the metrics could be computed with a parameter which represents thes extent of the
clustering criteria range used. The range starts with clustering criteria values which correspond to data with
high-agreement between annotators (for example low ADR correspond to high agreement of the workers with
the majority vote), and ends with clusters of lower-agreement data (high ADR reflects low agreement of the
worker’s annotations with the other annotations). In this way the evaluation can be made on any dataset with
the specification of the parameter.

4.4.2. Experimental set-up, results and discussions for the experiments on the variables
of the metrics

Experimental set-up
To investigate whether the hypotheses are valid, we apply them to models (1) to (3) and check whether the
value trends correspond to the expected behaviours on these different models. The impact of the different
variables which intervene in the computation of the metrics (clustering criteria, evaluation metric, number
of clusters to make the computations and range of clustering criteria based on disagreement of the data) is
analysed by making these variables vary and comparing the returned values to the expected behaviours of the
models. The range of clustering criteria values spans between 0 and 1, and the number of clusters between 1
and 13. The evaluation metrics used for the computation are the F1-score, the accuracy, the accuracy of the
positive class or the average of the true positive and negative rates.

Results
Popularity-related fairness. The results of the experiments are plotted in Fig. 4.3. For the other clustering
criteria, the figures are not put in the report for space considerations and because the results are similar
to the previous ones. For the standard deviation based values, as expected only using one cluster gives a
score of 0 on fairness (maximum fairness). Increasing the number of clusters does not make the score vary
significantly. Considering the clustering criteria range, the smaller the range is, the less disagreement in the
data remains, the more the final score varies for the F1-score, but the less it varies for the other evaluation
metrics. For the accuracy-based metrics, the smaller the range is, the lower the value is because there are
less variations across clusters since the more predictions are correct in total (the models are better at making
predictions for high-agreement data). The smaller the range is, the more unbalanced are the data, so the
F1-score varies in reversed direction to the other metrics. Compared to the standard deviation, the absolute
value measurements exhibit a larger range of values. The other observations are identical to the standard
deviation observations.

We select a number of clusters of 10 because this value presents few variations when varying the clustering
criteria range. We consider that the default choice of clustering criteria range should be the full range, and
if the test set does not enable it, it should be changed to a smaller range. Using the average of the clusters’
performance, we observe that decreasing the clustering criteria range increases the average performance
since only high-agreement data are considered. Using only one cluster represents the average accuracy over
the entire dataset. Varying the number of clusters does not have a large influence because the average is in
the end computed over the same data only with different weights. Similarly, using the clusters’ lowest value
we observe that the smaller the cluster range is chosen, the higher the minimum performance value is. This
is because the models perform better on high-agreement data. The number of clusters used has a larger
influence on the resulting values than for the average performance value: the larger the number of clusters,
the lower is the minimum value because there are more chances that some clusters have lower performance
(especially for clusters where there is a high disagreement on the annotations). Therefore, it is better to use
the average of the clusters’ performance since it is less sensitive to one of the parameters of the metric, and
thus it makes it easier to compare across clusters.

Other clustering criteria. Concerning the experiments using the Average-Disagreement Rate with the
majority vote, the bound of the clustering criteria range which varies is switched to the upper bound since
the upper bound correspond to data of higher disagreement. The observations are the same as the ones for
the popularity clustering criteria, and we draw the same conclusions. Concerning the experiments with the
ambiguity score, the observations are similar to the previous cases. For the experiments with the Worker
Quality Score and Unit Quality Score, we make the same observations as previously. However we note that
making the clustering criteria range vary does not influence the performance value much, probably because
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the differences among the low ranges of the WQS are not significant enough to make a difference in the per-
formance values. For this reason we decide not to base our fairness computation on this clustering criteria.

The results of the study of the fairness over the demographic categories are plotted in Fig. B.5. We observe
that the more demographic categories are removed, the fairer the algorithms are until they are totally accurate
when there is only one demographic category. Therefore, the proposed metrics seem to be an appropriate
way to measure fairness related to discrimination.

Discussion on the metrics parameters
H1, H2: Choice of the clustering criteria. The AS-based computation exhibits whether there are differences
between sentences subject to multiple interpretations and clear sentences. The ADR-based computation
exhibits differences between the annotators who usually have judgements which differ from the majority
and the annotators who always follow the majority. The AP-based computation represents an annotation-
level point of view on fairness showing possible performance differences between judgements which belong
to the minority and judgements followed by the majority, it gives a direct indication on whether the minority
is represented in the output predictions or is ignored for the majority. Therefore, these three computations
represent three different aspects of fairness, and enable to highlight three potential causes of unfairness since
they all exhibit the expected fairness-related behaviours. That is why we decide to retain the three criteria and
to present the three of them when evaluating fairness. Although discrimination-related fairness is not our
targeted fairness, the metric proposed seems appropriate and does not overlap with the other three metrics.
Therefore we choose to use it in the rest of the thesis to check for potential discriminations.

H3, H4, H5: Choice of the computation method. We select the standard deviation value over the abso-
lute value because the behaviours observed on these two metrics are similar, but the standard deviation takes
into each of the cluster values and thus the outlier clusters’ influence is decreased. The absolute value only
computes the difference between the highest and lowest performance values, so if one cluster exhibits unex-
pected values (for example if there are not enough data to compute a significant value), this value will have a
large influence on the resulting fairness value. We choose the cluster-average performance (mean value) as
the indication on the performance of the algorithms because it is less sensitive to the metric variables and be-
cause the combination of the average and the standard deviation enables to get a good approximation of the
range of performance the algorithms have on the dataset, so there is no loss of information. The behaviours
observed for the 4 different metrics are similar. We choose the computation of accuracies over the positive
and negative classes as the metric on which to make the computations because it enables to take into ac-
count the classification on the two classes, and therefore to highlight possible gaps in performances in case
the training dataset is unbalanced over classes. The F1-score could also be used for this purpose, however it
is not as easily interpretable as the accuracy.

H6: Choice of the metric parameters. From the results of the experiments, we observe that there is a
threshold on the range of the clustering criteria value where the fairness value changes much. The high-
agreement clusters (clusters under the threshold) have their corresponding prediction performance higher
with model (3) than with model (1) - model (3) is adapted to distinguish between different annotators-. The
low-agreement clusters (clusters over the threshold) do not exhibit a large performance difference between
the two models (sometimes even model (1) performs better than model (3)) because the algorithms might
not have enough data to learn accurate predictions over very high-disagreement annotations, or the accuracy
values computed for the high-disagreement data are not significant (lack of data to make the calculations).
For the thesis, we propose to set a threshold to differentiate between these two behaviours for each clustering
criteria and keep two fairness values -one before the threshold and one after- so that the two behaviours
are exhibited. We list in Table 4.3 the two minimal clustering criteria range values. We choose a number of

binning criterion / range min 0 min 1

AP 0 0.4
ADR 0.39 0.30

AS 0.5 0.7
demographic 0 100

Table 4.3: Threshold values for the different clustering criteria.

clusters of 10 because the returned values around this number of clusters are stable and the metrics are not
very sensitive to this parameter.
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4.4.3. Experimental set-up, results and discussion on the metrics’ significance
From our previous conclusions we selected a subset of the proposed metrics as a final fairness metric. We
apply significance tests on the selected metrics between the clusters to check whether the differences in per-
formance between each cluster are significant. We assume that if the value differences between the clusters
are significant, it means that it is appropriate to create a measure of this dispersion to measure fairness. The
experimental set-up and results are given in Appendix B.4.

The differences found between the clusters’ performance are not always significant. This does not mean
that the metric is not valid because it might be that the models simply do not perform differently on these
specific clusters, which are usually consecutive clusters what justifies that there associated performance are
similar. We can not reject one of the hypotheses we made previously based on these results.

4.4.4. Analysis of the extreme cases
We investigate the extreme cases to check for the validity of the metrics. For both the standard deviation
or the absolute value range, the fairness value ranges between 0 and 1. A fair model presents a value of 0
because the performance of each cluster is equal. The less fair the model is, the more the value increases, the
maximal unfairness value being equal to 1. The absolute value of the difference and the standard deviation
remain under 1 in any case and are equal to 1 when the performance of the clusters are spanning over the
whole range of possible values (for example in a case where there are two clusters, one with accuracy of 0
and one with accuracy of 1). Since it might be confusing that highest fairness corresponds to 0, we change
the computation by adding 1 to the opposite of the previous calculation, so that the highest fairness score
corresponds to 1 and the lowest score to 0.

We cannot use the global accuracy because if one class is better predicted than the other, although the av-
erage accuracy might show a good prediction quality, the accuracies of the two classes are very different. The
global accuracy would hide potential low performance. If the standard deviation is computed over both the
true positive and true negative rate values, the metric might not be a valid indication of fairness. If accuracies
across the clusters of the positive class are equal, same for the negative class, but the values for positive and
negative classes are different, the model is totally fair but the computation will return a low fairness value.
Thus, we need to distinguish the fairness of the two classes. Possible ways to combine the two could be to
take the average of the two scores or the minimum of the two. In order to have consistent indicators between
the dispersion indication and the general performance indication, we choose the same combination method
for these two scores. With the minimum the general performance and dispersion could be highly underes-
timated, thus we choose the combination by simple averaging of the fairness of each class. Simple average
without class weights enables to obtain a value independent from the dataset used to evaluate the algorithms
(no preference is given to one of the two classes).

4.4.5. Conclusion
H1, H2: Considering the previous observations, our final fairness metric (RQ2.3) is divided into 4 aspects:

• User average disagreement rate with the majority vote -based computation (ADR). It gives direct indi-
cation about fairness since it divides the dataset on a user level and our definition of fairness focuses
on performance equality across users.

• Annotation popularity -based computation (AP). It informs on whether the potential unfairness is re-
lated to more or less accurate predictions on minority or majority opinions.

• Sample ambiguity -based computation (AS). It informs on whether the potential unfairness is related
to more or less accurate predictions on samples with high or low agreement.

• Demographic -based computation. It informs on whether potential unfairness are related to discrimi-
native behaviours between categories of population.

H3, H4, H5: Each of these aspects consists in two values computed using the true positive and negative rates
of each cluster: standard deviation (dispersion metric) and cluster-average (general performance metric).

H6: In this thesis we use 10 clusters for each metric and decide to report the metrics computed on two
different clustering criteria ranges (full range of data, smaller subset of higher agreement), but we advise to
report measures on the whole range for more completeness later.
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Mathematical formalization of the fairness evaluation method
We formalize the computation of the four fairness aspects in a mathematical way.

Definition 4.1. Fairness metric
∀i ∈ J1;nGK, we note Gi 0 and Gi 1 each cluster of negative and positive class data in the partition of the dataset
into (two times) nG clusters. Each Gi 0 and Gi 1 consists in nGi 0 and nGi 1 samples si 0, j and si 1, j with j ∈ J1;nGi 0K

or j ∈ J1;nGi 1K. For each Gi 0 and Gi 1 is computed an average score Si 0 and Si 1 such as Si 1 =
∑nGi 1

j=1 si , j

nGi 1
and

same for i 0. The average score in our case is the average accuracy of the model’s predictions evaluated in the
cluster on its corresponding level (user, annotation or sample level) since the si , j are accuracies. The fairness

indication is defined for each class as F∗
0 =

√∑nG
i=1(Si 0−S̄0)2

nG−1 with S̄0 =
∑nG

i=1 Si 0

nG
, and same for the other class i1. F∗

0

corresponds to the sample standard deviation of the average score of each negative cluster, chosen because it
is a classical measure of statistical dispersion of a distribution. The general performance indication is given by
S∗

0 = S̄0 for the negative class and same for the positive class. Then, the global fairness indication is computed

as F∗ = F∗
0 +F∗

1
2 , and the general performance indication as S∗ = S̄0+S̄1

2 .
Depending on the clustering criteria considered, the scores si , j have different interpretations.

• Demographics. Average Disagreement Rate with the Majority-Vote. The Gi are clusters of annotators
with their annotations. The samples si 0, j (and respectively si 1, j ) represent the average accuracy of the
predictions of an algorithm for one annotator for the negative (respectively positive) class.

• Annotation Popularity Score. The Gi are clusters of annotations based on their ground truth label
(two classes) and on their popularity score (separated into 10 equal length ranges) (20 clusters in total).
The samples si , j are binary labels, 1 if the prediction of the algorithm is equal to the ground truth
annotation, 0 otherwise. Consequently, Si represents the average accuracy of the algorithm predictions
for the annotations of cluster Gi , for each class.

• Ambiguity Score. The Gi are clusters of sentences and their associated annotations. The samples
si 0, j (and respectively si 1, j ) represent the average accuracy of the predictions of an algorithm for one
sentence for the negative (respectively positive) class.

N.B: Here, each Si follows a Beta distribution Bet a(αi ,βi ). The Beta distribution is between J0;1K like
the true positive and negative rates. It is the conjugate prior of a random variable defined as the number
of success in nGi Bernoulli trials, here the trials are the different predictions of the model on the different
annotations. The Si are independent but not i.i.d since each distribution’s parameters are different (the scores
might vary a lot between clusters when the model is unfair). Thus, F∗ is not a real standard deviation of one
unique distribution, and cannot be computed analytically.

Application to the different models
In Fig. B.7 and B.8, we give the fairness performance of models (1) to (3). As expected, from the popularity
score, ADR and ambiguity score -points of view over fairness, model (3) shows an improvement over models
(1) and (2). This suggests that the metrics we propose are valid since they show the expected trends.

4.5. Summary
We focused on defining a new evaluation method of algorithmic fairness. We first proposed a definition of
algorithmic fairness adapted to the task of classifying samples on subjective properties: an algorithm is fair
when its prediction performance are equal for each user. (RQ2.1) Afterwards we investigated how to charac-
terize potential unfairness of the algorithms by proposing different ways to cluster the dataset and measure
the algorithm’s performance on each cluster. (RQ2.2) Finally, we proposed different ways to quantify fairness
by summarizing the observations enabled by the different characterizations, and investigated the validity of
these different measures. We concluded that clustering the dataset on a user-level, sample- and annotation-
levels, computing the true positive and true negative rates of each cluster, and measuring the standard de-
viation and average deviation across clusters give a valid measure of algorithmic fairness and of the general
performance of the algorithm. This process is the evaluation method we propose for algorithmic fairness of
models working on subjective properties ; the main characteristics of the resulting metrics being that they are
almost independent of the test set, and that they inform on different causes of unfairness. (RQ2.3)
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(a) Experimentations on the F1-score with model (1). (b) Experimentations on the F1-score with model (3).

(c) Experimentations on the accuracy with model (1). (d) Experimentations on the accuracy with model (3).

(e) Experimentations on the accuracy of the two classes
with model (1).

(f) Experimentations on the accuracy of the two classes
with model (3).

(g) Experimentations on the accuracy of the positive
class with model (1).

(h) Experimentations on the accuracy of the positive
class with model (3).

Figure 4.3: Experimentations on the popularity-based fairness computed with different evaluation metrics (F1-score, global accuracy
(’acc’), accuracy of the positive class (’acc_1’) or the average of the true positive and negative rates ([’acc_0’, ’acc_1’])). The y-axis repre-
sents the number of clusters on which is computed the metric, and the x-axis represents the clustering criteria low-agreement limit.
The results on the F1-score and the other metrics are different. The standard deviation and mean value show more robustness to the
variations of the parameters than the absolute and minimum values. A number of clusters and the clustering criteria ranges can be
decided from these plots.



5
Increasing the fairness of algorithms for

subjective properties classification

5.1. Introduction
In this chapter, we create algorithms for toxicity prediction which are fairer according to the definitions es-
tablished in Chapter 4, and answer RQ3: how to build and train algorithms whose outputs are fair when
predicting subjective properties of samples?, by answering the following sub-questions:

1. What are the current algorithms to perform sentence toxicity classification? (RQ3.1)
→ We review the Computer Science literature to find the Machine Learning and Deep Learning algo-
rithms currently used to perform toxicity prediction, and highlight their limitations.

2. How to integrate the subjectivity of the property to predict into the algorithms’ training process? (RQ3.2)
→ We hypothesize that using the annotations instead of labels enables to take into account each opin-
ion, what is tested by comparing algorithms trained on aggregated and non-aggregated annotations.

3. How to integrate the user subjectivities into the classifiers? (RQ3.3)
→ We test whether modifying the algorithms’ architectures enables to take into account the different
users this hypothesis, by comparing the performance of traditional algorithms with the ones of the
proposed algorithms.

4. How to model the psychology-related variables about toxicity perception to build a user profile and inte-
grate it into the model architectures? (RQ3.4)
→ We propose several encoding methods of the available variables and add them as inputs to the algo-
rithms. We test these encodings by comparing the performance of these input-augmented algorithms
with the performance of traditional Machine Learning algorithms.

5. How to resample the dataset to enable the proposed algorithms to learn? (RQ3.5)
→ We propose several criteria to resample the dataset. We show that balancing the dataset on these
criteria increase the performance of the algorithms.

5.2. Formulation of hypotheses
In this section, we formulate hypotheses to answer RQ3. We investigate what current algorithms are for sen-
tence toxicity prediction (RQ3.1) (subsection 5.2.1). Then, we propose modifications of these baselines to
make the models fairer than they currently are (RQ3.2 to RQ3.5). We are both interested in proposing new
architectures and training processes or modifying current ones, and new dataset resamplings.

5.2.1. Current methods for toxicity prediction
Here, we answer RQ3.1: what are the current algorithms to perform sentence toxicity classification? From

the literature, we identify the Machine Learning algorithms employed for toxicity prediction, and quickly
evaluate them since they will serve as a baseline on which to compare our new algorithms on.

67
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There are three main directions employed to perform toxicity prediction (Section 2.2): using list of words
and rule-based algorithms to compare the sentences on, using Machine Learning classifiers, and using Deep
Learning neural networks. We are not interested in the first technique because it exhibits the worst per-
formance, it is not modular -including the users to the process would be very memory-consuming since it
would need word lists for each annotator-, and it is infeasible with the available data -collecting lists of words
for each annotator by performing crowdsourcing would be very expensive. Consequently, we study Machine
Learning algorithms and deep neural networks.

From the Machine Learning area, we choose three baselines: the Logistic Regression (LR) classifier, the
Support Vector Machine (SVM) classifier and the Multi-Layer Perceptron (MLP) because they are the most
researched classifiers and are shown to obtain higher performance than the list of words classifiers. Moreover,
the LR and MLP are the two classifiers used in the paper working on toxicity prediction from which we take
the Jigsaw dataset [111]. Although they present performance results on a different property annotated on the
dataset (aggressiveness and not toxicity), we assume that the performance will vary in small ranges, and thus
it is one more point of comparison to verify the correct training of the algorithms.

Since it is time-consuming to train Deep Learning models, we focus on one unique Deep Learning model,
the study could easily be extended to other models later. The codes of papers [50] 1 and [9] 2 are available. In
[50], they show that biLSTM with attention perform better than simple LSTM models. In [9], it is shown than
CNN with GloVe embeddings perform better than LSTM. They do not compare with biLSTM with attention,
so it is not possible to compare the two and make a decision. However, [50] use less training data (1528
comments, 435 labelled as hateful) than [9] (16K tweets, 3383 labelled as sexist, 1972 as racist), and the data
might be more similar to our data (Fox News comments for [50], tweets for [9]). Therefore, we choose to use
a biLSTM with attention for offensiveness prediction implemented based on [50]’s implementation.

We evaluated these baselines (Appendix C.1) and found similar results as in the papers. As expected,
the performance of the more complex classifiers are higher than the simpler ones (in increasing order of
performance Logistic Regression, Multi-Layer Perceptron and LSTM-RNN) because the Jigsaw dataset has
many data that complex classifiers can learn more easily while the other classifiers might overfit.

5.2.2. Design of Machine Learning architectures for fairer models
Since the algorithms should output each annotation of the users of the system to be fair, we hypothesize that:

H1: we cannot use the aggregated labels since the algorithms would then input unique labels per
sample, but we have to use the disaggregated annotations.

Simply feeding the algorithms with the annotations will not help them learn the users’ opinions since they
do not have a mean to distinguish the users, as seen in Appendix C.1. We devise a way to integrate the users’
subjectivities in the models (RQ3.2, RQ3.3). The literature review identified three ways to adapt the outputs
of algorithms to each user. Machine Learning researchers build one classifier per user in order to deal with
different interpretations of a same sample. This approach is neither generalizable to unseen users, nor scal-
able if the dataset is constituted of many users. The Deep Learning literature employs different approaches
to personalize algorithms. The algorithms are usually taught a representation of the users which is integrated
into the neural networks in different places, be it the input or cells of certain layers, such as certain neural
network- based recommender systems which use users’ individual features as additional features to the in-
puts of the classifiers. Tang et al. [104] transform the network inputs into a user-specific representation by
multiplying them with a user matrix learned for each user. This matrix has common parameters to each user
and user-specific parameters. This method is meaningful for our use-case since it would transform the input
sentences differently depending on the users’ interpretation. We formulate hypotheses from these ideas.

We propose to evaluate whether augmenting the usual input features with annotators information leads
to fair predictions in the case of sentence toxicity prediction. The psychology literature provided us with a
set of human features which influence toxicity perception, among them gender, age, and education level are
available in the Jigsaw dataset. That is why we use these features. We formulate the following hypothesis:

H2: adding as input to classifiers the users’ information that psychology literature defines as influ-
encing variables for toxicity perception enables the models to output the opinions of each user.

1https://github.com/sjtuprog/hateful-speech-detection
2https://github.com/pinkeshbadjatiya/twitter-hatespeech

https://github.com/sjtuprog/hateful-speech-detection
https://github.com/pinkeshbadjatiya/twitter-hatespeech
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The demographic information to input should be encoded in an exploitable way for the classifiers. We
propose two encodings to model the demographic variables and input them into the models: 1) one-hot
encoding of the three variables and concatenation of these three representations (H2.1), or 2) continuous rep-
resentation (between [0;1] for example) of each variable according to the available ranges in the dataset and
concatenation of these three representations (H2.2) (RQ3.4).

This adaptation of the classifiers should return fair predictions only using a few features describing the
users. It can be used with any kind of Machine and Deep Learning classifiers, what makes it adaptable. It is
also a fast way to make predictions since adding a few features do not slow down the learning process and the
prediction process much compared to only using the features describing the samples.

5.2.3. Design of training processes for fairer models
The hyperparameters of the different classifiers are usually chosen by performing a grid search over the
ranges of values in which they are most likely to perform best. The grid search consists in training on a
training dataset and evaluating on an evaluation dataset a classifier with its hyperparameters set to different
values, and choosing the set of hyperparameters which exhibit the highest performance on the evaluation
dataset. The performance metrics usually employed are the accuracy, precision, recall or F1-score, but they
do not exhibit any information about the fairness of the model, so we hypothesise that using fairness mea-
sures instead of these usual metrics would improve the fairness of the models.

During the training process, the number of training data and features is chosen in order to reduce over-
fitting (because of a too large number of data or a too small number of features to describe the data) and
underfitting (because of a too small number of data or a too large number of features). This is tested by
plotting the learning and feature curves (model performance on the training and test sets as a function of
respectively the number of training data and the number of features to represent the data samples) using
the usual performance metrics. If the training and test curves are both low, the model is underfitting, if the
training curve is high but the test curve is low, the model is overfitting. Consequently we hypothesise that:

H3: using the fairness measures as the performance metric to optimize when tuning the hyperpa-
rameters of the models with grid search, and when choosing the number of data features and train-
ing data according to the learning and feature curves, increase the fairness of the final model.

5.2.4. Adaptation of the training dataset for fairer models
We assume that a raw dataset for which we have samples, annotations, and information about the annota-
tors is not optimized to train Machine Learning models for two reasons. We observed in Appendix A.2 that
the dataset is highly class-unbalanced, what could hinder the accurate training of the models, and thus we
assume it is necessary to balance the toxicity classes. Moreover, we identified several aspects to understand
potential unfairness of the models, and proposed to cluster the dataset on these aspects by uniformly divid-
ing the dataset into equally-sized ranges of clustering criterion values (corresponding to the studied fairness
aspect) to identify the unfairness. The largest clusters, mostly the clusters whose annotations correspond to
high agreement between the annotators, receive predictions of higher performance than the other clusters.
Sinces the disparity of cluster sizes is related to these unfairness, to answer RQ3.5 we hypothesize that:

H4: balancing the training dataset over one of the clustering criteria used to study the multiple fair-
ness aspects increases the fairness performance of the models trained with this resampled dataset.

There are not enough data in the dataset to balance it using the four clustering criteria simultaneously.
Possibly as future work we could quantify how much the resamplings improve the models’ fairness and in-
vestigate several combinations of resampling methods using a subset of the four resampling methods.

5.3. Experimental set-up
In this section we explain the experimental protocol used to test the hypotheses of the previous section.
Mainly we build the new models proposed in the hypotheses, evaluate their performance, and compare them
with the performance of the baseline models (Section 5.2.1). Because of a lack of time due to the long training
process of the deep neural networks, we only experiment on one Machine Learning algorithm.
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5.3.1. Evaluation of the models
Evaluation process
We evaluate the models with the fairness evaluation method proposed in Chapter 4. Additionally, in order
to compare the models to their baseline, we evaluate the models using the traditional Machine Learning
performance metric (accuracy, precision, recall, and F1-score).

In Machine Learning, it is common practice to divide the dataset into a training set on which to train
the models, and a test set on which to evaluate them. Having multiple samples on which to test the models
enables to compute the mean of the performance value (what is a better approximation of the real perfor-
mance of the models) and the standard deviation of the performance (what is a measure of the variation of
the performance), so that an eventual comparison of the models could be done with significance tests.

In our case, the fairness evaluation method requires to use the whole set of test data to compute the fair-
ness measures because they consist of both the mean and standard deviation over data from several clusters.
Consequently, in order to still be able to perform significance tests when comparing the performance of sev-
eral models, we perform a cross-validated evaluation. We divide the dataset into 10 folds, and 10 times we
train the model on 9 of the folds and evaluate it on the remaining fold. Then we compute the average and
standard deviation of the fairness performance over the 10 folds. We choose to use 10 folds because less folds
would not enable to compute significant mean and standard deviation over the performance measures, and
more folds is too time-consuming to evaluate the models.

Significance tests
Once the average and standard deviation of the fairness scores are computed over the 10 folds, we compare
the scores between different models. This is equivalent to compare the means between two populations, the
means being the average of the fairness scores, and the populations being the scores that are retrieved from
each fold (the populations are constituted of 10 subjects). The null hypothesis for the difference between
the means of models 1 and 2, µ1 and µ2, is H0 : µ1 = µ2. The tests consist in comparing a theoretical statis-

tic tth and an experimental statistic texp . If
∣∣∣texp

∣∣∣ > tth , the null hypothesis is rejected, otherwise, they are

considered equal with the confidence level α used to compute tth . We choose α= 0.01 and α= 0.05.
In our case, the standard deviations and means of the two compared populations are not known but only

estimated with the sample standard deviation and sample mean. Consequently we choose the two-sample t
statistic as our test statistic. There are two versions of this test depending on whether the variances of the two
populations are considered equal or different. The equality of variance can be tested with an homogeneity
of variance test such as the Levene’s test, however we did not do this because of time constraints, but we
computed the two versions of the test to check whether there are differences in the results.

We note X̄i the sample average, si the sample standard deviation and ni the number of individuals in
population i , i taking values 1 and 2 for the two populations. In the case where the variances are assumed
equal, the test statistic is:

texp = (X̄1 − X̄2)− (µ1 −µ2)√
s2
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(5.1)
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In the case where the variances are different, the test statistic is:

texp = (X̄1 − X̄2)− (µ1 −µ2)√
1

n1
+ 1

n2

√
(n1−1)s2

1+(n2−1)s2
2

n1+n2−2

(5.3)

and the degree of freedom is:
d f = n1 +n2 −2 (5.4)

For these tests to be used, because the number of samples per population is n1 < 30 and n2 < 30, the data
must be normally distributed (that is an assumption we make). texp is computed considering µ1−µ2 = 0. The

theoretical statistic is found in the t-table of value by choosing tth = t
(
1− α

2 ,d f
)
.
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5.3.2. The training process of the models (H3)
In cases where the hyperparameters of the models have to be tuned, k-fold cross-validation or its variants are
employed, k evaluations being averaged in the end to choose the hyperparameters which return the highest
performance in average. In our case, training and testing the algorithms is very time-consuming. Conse-
quently we perform tuning of the algorithms simply by dividing the training dataset of the first iteration of
the cross-validation into a training subset -80% of the data in the training dataset- and a validation subset
-the remaining 20% of the data-, training the models with the different hyperparameters on the training sub-
set, and evaluating them on the validation subset. The selected hyperparameters are the ones which return
the highest performance on the validation subset. For the Logistic Regression classifier, we optimize the reg-
ularization cl fC and the tolerance for stopping criterion cl ftol .

As explained previously, it is necessary to plot the learning curve and feature curve to select the number
of training data and the number of features which enable the models neither to overfit nor to underfit. Here
the curves are plotted by evaluating the models on the training and test set after tuning the hyperparameters.

To study hypothesis 3 (H3), we compare the performance of the models trained with a number of features
and a number of training data selected by computing the accuracy as performance metric or an average of the
two measures (dispersion and general performance) of the main fairness performance metric (based on the
annotation clustering using the ADR). We also study the influence of the metric choice for grid search by com-
paring the performance of models whose hyperparameters are selected based on the accuracy performance
or based on a combination of the two main measures of fairness performance. The choice of the method to
combine the two fairness measures for the grid search is detailed in Appendix C.3. The chosen combination
is a weighted average of the normalized numbers of the standard deviation of the ranges in which vary the
two measures during grid search. The models to compare are the ones that are adapted to increase fairness
in H1 and H2, in order to be able to identify potential increase of fairness.

5.3.3. The datasets to train the models on (H4)
The dataset used is the Jigsaw dataset, that we clean by removing the annotations of the spammers using the
CrowdTruth framework (Section 3.3.2). We filter the annotations which correspond to annotators who did
not provide their demographic information and use them only for testing the models but not for training.

In order to test hypothesis 4 (H4), we prepare 8 resampled datasets: 4 datasets balanced on the two classes
and balanced on the repartition of the clustering criteria values, and 4 datasets balanced on the two classes
but following the original distribution of the clustering criteria values, the 4 clustering criteria being the an-
notators’ demographic information, the annotators’ average disagreement with the majority-vote (ADR), the
annotation popularity (AP) and the sample ambiguity (AS). We train the models proposed in H2, H3, H4, on
the disaggregated annotations of each resampled dataset, and compare the performance.

In order to compare the performance among the different datasets, we make them equally sized. Accord-
ing to the previous sections we need to divide each dataset into 10 folds, consequently we perform the same
resampling on each fold so that each of them have a similar constitution. The resampling method is explained
in Appendix C.4. The resamplings are presented in Fig. 5.1.

5.3.4. The Machine Learning models to compare (H1, H2)
In order to verify hypothesis 1 (H1), we compare the performance of a model trained on the aggregated la-
bels (baseline) and a model trained on all the annotations. To test H2, we train the adapted models on the
annotations, and compare their performance to their baselines (the simple models without additional input
features) also trained on annotations, and trained on the aggregated annotations. The SVM and MLP clas-
sifiers and the Deep Learning models are time-consuming to tune and train, consequently we leave their
evaluation as future work, and instantiate the models with the Logistic Regression classifier.

Each demographic information takes values corresponding to bins of possible values in the crowdsourc-
ing task: age (’Under 18’, ’18-30’, ’30-45’, ’45-60’, ’Over 60’), gender (’female’, ’male’, ’other’), education level
(’none’, ’some’, ’hs’, ’bachelors’, ’masters’, ’doctorate’, ’professional’). The one-hot encoding (OH) considers
each of these bin value as one feature, to which we add one feature per information category to represent the
cases where the demographic information is unknown for the specific user. That constitutes 6+4+8 = 18 fea-
tures. For the continuous encoding, we attribute one value between [0;1] to each of the possible bins of each
demographic category (also considering the additional unknown information bin values). For the age and
education level which are ordinal variables, the values attributed to them follow the order of the bin values,
with 0 representing the unknown information case. The continuous encoding consists in 3 features.



72 5. Increasing the fairness of algorithms for subjective properties classification

(a) Following the original dis-
tribution of annotations per
demographic.

(b) Balanced on the distribu-
tion of annotations per demo-
graphic.

(c) Following the original dis-
tribution of annotations per
bin of annotators clustered on
their ADR.

(d) Balanced on the distribu-
tion of annotations per bin of
annotators clustered on their
ADR.

(e) Following the original dis-
tribution of annotations per
bin of annotations clustered
on their AP.

(f) Balanced on the distribu-
tion of annotations per bin of
annotations clustered on their
AP.

(g) Following the original dis-
tribution of annotations per
bin of samples clustered on
their AS.

(h) Balanced on the distribu-
tion of annotations per bin of
samples clustered on their AS.

Figure 5.1: Presentation of the constitution of one fold for each dataset resampling. Each resampled dataset contains the same number
of annotations.

5.4. Results and discussion
In this section, we present and discuss the results of the experiments.

5.4.1. Training process (H3)
In Fig. 5.2, we show an example of combined feature and learning curves for the two training processes. The
learning curve computed on the accuracy shows an increasing trend for the accuracy-based training process,
while for the ADR-based training process this evolution is not as linear. On the contrary, the dispersion and
general fairness performance measures evolve more linearly for the ADR-based training process than the
accuracy-based training process. This is easily explained by the choice of the variable which is optimized in
each training process. Both training processes lead to the same conclusions: the more data (7000 data at most
here) and the more features (10000 here) are used, the more the performance are maximized.

The significance tests on the performance of the models trained with different training processes are re-
ported in tables such as Table 5.1. These tables comprehend the evaluation of the models on the fairness
measures and traditional measures (X̄1, X̄2), the computation of the difference of performance between the
models (X̄1 − X̄2), the results of the computation of the experimental test statistic (texp ) and the theoretical
test statistic for the 2 values of α retained (tth), and the results of the significance test in the last column (+
indicates that the null hypothesis is rejected and that the two models performance are significantly different).

For all the fairness metrics but not for the accuracy metric there is a significant difference in measures
between the models trained with an accuracy- or an ADR- related training process. The dispersion between
the performance within each cluster is lower for the ADR-related training process, while the fairness metrics
which measure the general performance across clusters show higher performance for the accuracy-related
training process. This is because the ADR-based training process takes into account the dispersion contrary
to the accuracy-based training process. On the contrary, the accuracy-based training process chooses the
hyperparameters whose values increase the accuracy of the classifier, what might simultaneously increase
the performance of the models for the data in most of the clusters, and that is why the general performance
values are higher for the models trained with the accuracy-based training process.
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(a) Learning and feature curves for the accuracy-based
training process.

(b) Learning and feature curves for the ADR-based train-
ing process.

Figure 5.2: Training of the Logistic Regression with continuous user model, on the balanced dataset along the annotation popularity
percentage, evaluated with different performance metrics. The different curves correspond to the different numbers of features from
100 features (purple) to 10000 features (red), and evaluation data (dashed lines for training data and plain lines for test data). The shapes
of the curves are inverted for the two training processes.

metric X̄1 X̄2 X̄1 − X̄2 texp tth signi.

ADR_discr_0 0.9263 0.9386 -0.0124 10.9525 2.201, 3.1058 (+, +)
ADR_perf_0 0.6122 0.5679 0.0444 40.4613 2.1314, 2.9467 (+, +)
ADR_discr_1 0.9470 0.9551 -0.0081 14.2168 2.1448, 2.9768 (+, +)
ADR_perf_1 0.6378 0.5939 0.0438 43.6362 2.1448, 2.9768 (+, +)
AS_discr_0 0.8811 0.9006 -0.0195 20.8404 2.1098, 2.8982 (+, +)
AS_perf_0 0.5794 0.5635 0.0159 47.1665 2.1098, 2.8982 (+, +)
AS_discr_1 0.8700 0.8883 -0.0184 13.8746 2.1448, 2.9768 (+, +)
AS_perf_1 0.5828 0.5677 0.0151 31.3883 2.1098, 2.8982 (+, +)
AP_discr_0 0.8391 0.8618 -0.0227 18.1327 2.1314, 2.9467 (+, +)
AP_perf_0 0.5559 0.5452 0.0107 30.5314 2.201, 3.1058 (+, +)
AP_discr_1 0.8980 0.9098 -0.0118 13.6751 2.1098, 2.8982 (+, +)
AP_perf_1 0.6281 0.6051 0.0231 20.8987 2.1098, 2.8982 (+, +)
demog_discr_0 0.6446 0.6960 -0.0514 9.3540 2.201, 3.1058 (+, +)
demog_perf_0 0.6118 0.5925 0.0193 14.3345 2.1098, 2.8982 (+, +)
demog_discr_1 0.8483 0.8839 -0.0356 8.0386 2.1199, 2.9208 (+, +)
demog_perf_1 0.6878 0.6359 0.0519 56.3902 2.1098, 2.8982 (+, +)
A 0.7715 0.7714 0.0001 0.0159 2.2281, 3.1693 (-, -)
P 0.8232 0.8065 0.0168 30.8088 2.1098, 2.8982 (+, +)
R 0.7715 0.7714 0.0001 0.0159 2.2281, 3.1693 (-, -)
F1 0.7923 0.7866 0.0058 1.5559 2.2281, 3.1693 (-, -)

Table 5.1: Significance tests between model 1 trained with accuracy-based training process, and model 2 trained with ADR-based training
process. Computed on all the test data. Models: LR - continuous user model - balanced bin popularity percentage. The performance
comparison on the different metrics are reported vertically.
Most metric comparisons show a significant between the performance of the two models.

Consequently, we decide to choose the ADR-based training process for the rest of the experiments. The
difference is however not very large and we conclude that although hypothesis H3 is verified, the increase of
fairness performance is not very large and usual training processes could also be employed. (H3)

5.4.2. Dataset resamplings (H4)
Here we study the effect of the different dataset resamplings on the performance of the models.

Annotation-popularity dataset resampling
For the AP resampling, the fairness measures based on the demographic categories exhibit much higher per-
formance with the original distribution of the dataset (around 0.2 difference of dispersion for values between
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0 and 1), while the measures based on the AS score and the AP score show higher performance with the bal-
anced distribution, with higher values for the dispersion than the general performance. The measures based
on the ADR do not exhibit large differences. In the resampling, there are as many annotations which are rep-
resentative of the majority-vote as annotations which differ a lot from it, what makes the models learn well
the highly popular and the less popular annotations. That is why the measure of dispersion based on the AP
score is higher with the balanced dataset. The measure based on AS of the samples focuses on measuring the
dispersion of performance across samples whose annotations are all similar and samples whose annotations
differ a lot. These clusters have a similar distribution in the training dataset as the clusters of balanced AP, so
the measure of dispersion based on the ambiguity of the samples is also higher with the balanced dataset.

Concerning the annotator ADR-based fairness measure, the performance are very similar for each model,
with slightly higher general performance with the dataset of original distribution. This might be because
the clusters on which are based the computations contain as many annotations from annotators who of-
ten disagree with the majority vote as annotations from annotators who often agree with the majority vote.
These annotators who disagree the most do not disagree for more than 30% of their annotations according to
Chapter 3. Consequently, all the clusters contain data with generally high consensus, and therefore training
a model on the dataset with original distribution leads to higher performance on this criterion because the
dataset contains mostly high consensus data.

On the contrary, the measures based on the demographic categories show an important decrease of per-
formance probably because the distribution of the AP score within each demographic category is similar, with
more popular than unpopular annotations. Consequently, learning with more annotations leads to higher
performance (and possibly similar performance) within each category, and that is why the dispersion and
general performance measures are higher with the dataset of the original distribution.

Thus we conclude that the annotation-popularity based balanced resampling enables to increase the
performance of the models on two aspects of fairness, the ambiguity score and annotation popularity based
fairness measures, but not on the other aspects.

Sample agreement dataset resampling
The trends between the models trained on the datasets with original or balanced distribution based on the AS
are different from the trends observed for the samplings based on the AP. We observe that for all the aspects of
fairness, the general performance measures are higher for the models trained on the balanced dataset while
the dispersion measures are higher for the models trained on the dataset following the original distribution.

In the training dataset, there are as many annotations about samples which exhibit high consensus than
annotations about samples with low consensus. Consequently there are more annotations which are usually
representative of the majority vote because the clusters corresponding to the samples of low consensus com-
prehend both annotations equal and different from the majority vote, while the high consensus samples clus-
ters almost only have majority vote annotations. There must be a more equal number of higher-consensus
annotations in each cluster of the different clustering criteria, and consequently the dispersion decreases
(lowest-consensus annotations are less "learned" by the model), while the general performance increases
since data in most of the clusters are more evenly "learned".

Consequently the balanced resampling based on the sample agreement can be used when the general
performances of the difference fairness aspects should be maximized.

Conclusion
We conclude that depending on the fairness aspect to maximize, different resampling methods to make the
training dataset balanced over one criteria can be chosen. (H4)

In Fig. 5.3, a comparison of the performance of the models trained on the different resamplings, measured
with different metrics, is given. It is useful to select which resampling to use in order to maximize one of
the performance metric. For example, if one wishes to maximize the dispersion of the algorithmic fairness
metric, one could choose to balance the dataset on an annotation level over the annotation popularity, this
is however at the expense of the general performance of the algorithmic fairness metric which is generally
lower than for the other models. On the contrary, one could choose to balance the dataset on a sentence level
on the sentence ambiguity or on an annotator level on the ADR score or demographic categories in order
to achieve a better balance between the two aspects of the algorithmic fairness metric, as well as to reach
higher values of the traditional performance metrics. Each of these resamplings present slightly higher or
lower performance values on different performance metrics but their general evolution trends are the same.
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Figure 5.3: Comparison of the performance of the models trained on the different balanced resamplings with different user models.
Logistic Regression. The performance trends are the same for the different user models, but not for the different resamplings. The
algorithmic fairness performance metrics reported are indicated with "discr" for the dispersion aspect and with "perf" for the general
performance, "0" indicates a computation on the whole dataset, while "1" indicates a computation on a smaller subset of the dataset (as
explained in Chapter 4).

5.4.3. Machine Learning models (H1, H2)
First, we analyse the results on the balanced dataset over the AP. First, we compare the performance of the
models not using any user model, trained on the aggregated annotations and on all the annotations. The
evaluation on the usual metrics and the dispersion fairness measures exhibit higher performance for the
model trained with all the annotations. This is because there are more annotations on which to train the
models and consequently the global performance and the performance for each cluster increase. The general
performance-based fairness measures however decrease, because the annotators are not differentiated and
consequently all the clusters which do not correspond to a total consensus between annotations see their
average performance decrease due to the upper limit of accuracy when no distinction is possible.

In Tables 5.2 and 5.3, we report the results of the comparison between the models trained with the ag-
gregated annotations and with all the annotations with the user model (continuous and one-hot encoded
respectively). The demographic-based fairness measures decrease when using the user models, while most
of the other measures, especially the ones focusing on the discrepancy of performance across clusters, in-
crease. We give in Appendix C.5 examples of high and low consensus data samples which are correctly or
wrongly classified for each model. We notice that the models with augmented input features learn to predict
the annotations of two types of sentences better than the usual models without additional inputs. They are
able to predict correctly 1) the uncommon annotations of long sentences which are informative but might
also be interpreted as toxic, and 2) the annotations of short non-toxic sentences whose grammar is incorrect.

We additionally analyse the results of the comparison between the models trained with all the separate
annotations, without or with user model. The general performance fairness measures increase when using
the user model, because the models are adapted to learn the users’ specificities and distinguish between
them. The dispersion-based performance decrease: the very low consensus annotations are not learned by
the models while the higher consensus data are learned better than without user model, what contributes
to a higher dispersion than without user model. This second batch of observations nuance our previous
conclusions. Part of the improvement observed using the individual annotations might only be due to the
fact that the datasets of annotations contain more data, and that consequently the models are able to learn
better. However, it also enables to conclude that using adapted architectures (here inputs) of the models
enables to increase certain aspects of fairness (especially the general performance across clusters), but that it
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does not make the dispersion performance increase because the very low consensus data are too difficult to
learn. Having more data would probably enable the models to learn the low consensus data better.

Table 5.2: Significance tests between model 1 trained with ag-
gregated annotations, and model 2 trained with individual an-
notations with the continuous user model. Computed on all
the test data. Models: LR, trained with balanced sampling of
cluster annotation popularity.

metric X̄1 X̄2 X̄1 − X̄2 texp tth signi.

ADR_discr_0 0.9166 0.9386 -0.022 18.4933 2.201, 3.1058 (+, +)
ADR_perf_0 0.6413 0.5679 0.0735 61.9636 2.1448, 2.9768 (+, +)
ADR_discr_1 0.9424 0.9551 -0.0127 28.1282 2.1098, 2.8982 (+, +)
ADR_perf_1 0.6858 0.5939 0.0918 80.2558 2.1604, 3.0123 (+, +)
AS_discr_0 0.8524 0.9006 -0.0483 55.5514 2.1098, 2.8982 (+, +)
AS_perf_0 0.5664 0.5635 0.0028 8.0738 2.1098, 2.8982 (+, +)
AS_discr_1 0.8465 0.8883 -0.0418 33.0378 2.1604, 3.0123 (+, +)
AS_perf_1 0.5727 0.5677 0.005 11.2934 2.1199, 2.9208 (+, +)
AP_discr_0 0.7913 0.8618 -0.0704 77.7297 2.1098, 2.8982 (+, +)
AP_perf_0 0.5332 0.5452 -0.012 33.2595 2.1788, 3.0545 (+, +)
AP_discr_1 0.8677 0.9098 -0.0421 58.1453 2.1199, 2.9208 (+, +)
AP_perf_1 0.6535 0.6051 0.0484 51.5479 2.1098, 2.8982 (+, +)
demog_discr_0 0.9316 0.6960 0.2356 44.3116 2.2622, 3.2498 (+, +)
demog_perf_0 0.6927 0.5925 0.1002 65.2484 2.1199, 2.9208 (+, +)
demog_discr_1 0.9877 0.8839 0.1038 28.6858 2.2622, 3.2498 (+, +)
demog_perf_1 0.7090 0.6359 0.0731 75.5703 2.1098, 2.8982 (+, +)
A 0.7055 0.7714 -0.0659 10.9203 2.201, 3.1058 (+, +)
P 0.8387 0.8065 0.0322 65.3002 2.1199, 2.9208 (+, +)
R 0.7055 0.7714 -0.0659 10.9203 2.201, 3.1058 (+, +)
F1 0.7478 0.7866 -0.0387 9.7651 2.1604, 3.0123 (+, +)

Table 5.3: Significance tests between model 1 trained with ag-
gregated annotations, and model 2 trained with individual an-
notations with the OH user model. Computed on all the test
data. Models: LR, trained with balanced sampling of cluster
annotation popularity.

metric X̄1 X̄2 X̄1 − X̄2 texp tth signi.

ADR_discr_0 0.9166 0.9264 -0.0098 5.3677 2.1199, 2.9208 (+, +)
ADR_perf_0 0.6413 0.6127 0.0286 19.8926 2.1098, 2.8982 (+, +)
ADR_discr_1 0.9424 0.9496 -0.0072 9.5522 2.1604, 3.0123 (+, +)
ADR_perf_1 0.6858 0.6503 0.0355 27.4301 2.1098, 2.8982 (+, +)
AS_discr_0 0.8524 0.8795 -0.0271 29.2343 2.1199, 2.9208 (+, +)
AS_perf_0 0.5664 0.5794 -0.0131 36.7404 2.1098, 2.8982 (+, +)
AS_discr_1 0.8465 0.8701 -0.0236 23.7801 2.1314, 2.9467 (+, +)
AS_perf_1 0.5727 0.5844 -0.0118 27.6040 2.1098, 2.8982 (+, +)
AP_discr_0 0.7913 0.8298 -0.0385 25.6621 2.1788, 3.0545 (+, +)
AP_perf_0 0.5332 0.5510 -0.0178 62.2921 2.1448, 2.9768 (+, +)
AP_discr_1 0.8677 0.8946 -0.0269 29.9545 2.1604, 3.0123 (+, +)
AP_perf_1 0.6535 0.6378 0.0157 12.3177 2.1448, 2.9768 (+, +)
demog_discr_0 0.9316 0.6877 0.2438 84.4621 2.201, 3.1058 (+, +)
demog_perf_0 0.6927 0.6358 0.0569 36.3021 2.1199, 2.9208 (+, +)
demog_discr_1 0.9877 0.7892 0.1984 70.7631 2.2622, 3.2498 (+, +)
demog_perf_1 0.7090 0.6798 0.0292 24.4836 2.1098, 2.8982 (+, +)
A 0.7055 0.7376 -0.0321 9.0759 2.1098, 2.8982 (+, +)
P 0.8387 0.8263 0.0124 29.9003 2.1098, 2.8982 (+, +)
R 0.7055 0.7376 -0.0321 9.0759 2.1098, 2.8982 (+, +)
F1 0.7478 0.7698 -0.022 8.2811 2.1098, 2.8982 (+, +)

In Fig. 5.4, we show on data clustered over different fairness aspects an example of the performance dif-
ference of a model trained with no user model and a model trained with a one-hot encoded user model, with
or without aggregation of the annotations into the majority vote. As expected, the clusters corresponding to
the lowest consensus data receive predictions of lower performance than the clusters constituted of higher
consensus data. For the data clustered according to the demographic categories of the annotators, the model
which does not distinguish between users exhibit similar performance for each category of population be-
cause they all have similar distributions of consensus over the annotations (Appendix A.2). When employing a
user model, the performance of the predictions become different across the categories of population because
the populations for which there are more training data available see their predictions more adapted than the
other populations. This is an indication that the training set would merit being more balanced if this aspect
of fairness should be optimized. For the other clustering criteria, the model with a user model perform better
on the low-consensus data than the models without user model, because it distinguishes between annota-
tors and consequently make better predictions over data different from the majority vote. On high consensus
data however, the model using a user model performs worse than the model without user model training on
all the annotations, because it lacks training data to perform as well as without user model on this data while
performing better on low-consensus data. It sill performs better than the model without user model and
trained on the majority vote, what is an indication that hypothesis H1 is verified.Consequently, employing a
user model makes the predictions fairer on our targeted aspects of fairness, but, due to the limited size of the
training dataset, it also makes it more discriminative.

Therefore, we conclude that hypotheses H1 and H2 are verified: when using the individual annotations
instead of the aggregated ones, with adapted models, it is possible to increase the different targeted fairness
measures (and the traditional evaluation performance) (H1, H2), but it might not be possible to increase
the discrimination-oriented fairness due to the limited size of the current training dataset.

We compare the two user property encodings in Table 5.4. The continuous encoding achieves higher fair-
ness performance in terms of dispersion while the one-hot encoding achieves better fairness performance in
term of general performance across clusters. Consequently, depending on the desired metrics to maximize,
one might select one of the two encodings according to these observations. (H2.1, H2.2)

We perform the same tests on the other resamplings of the dataset. For the dataset constituted of the
original distribution of AP, the difference is not large between the models trained without user model and the
models trained with a continuous or one-hot encoded user model. However, when there is a difference, it
shows a slight improvement of the fairness measures for models including a user model. The performance
differences between the continuous and one-hot encoded models are also small. For the dataset constituted
of the original distribution of AS, we make the same observations as in the previous case. For the dataset
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Figure 5.4: Comparison of the error rates of the predictions for the models without and with one-hot encoded user model, trained on
the aggregated annotations and all the separate annotations. Logistic Regression trained on the dataset balanced over the annotation
popularity.
Low consensus clusters receive predictions of poorer performance than higher consensus clusters. Models with users’ model perform
better on these low-consensus clusters and approximately equally well on the high-consensus data.

constituted of the balanced distribution of AS, using user models makes a significant difference compared
to the performance of the models without user model, especially for the one-hot encoded user model for
which the fairness performance difference are important. Generally, the same observations are made with
the other resamplings. When the original distribution of the clustering criterion is kept in the dataset, the
differences between the models are smaller, maybe because it is not easy for the models to learn both high
and low consensus data with these datasets.

5.5. Conclusions, summary
In this chapter, we investigated how to modify current Machine Learning models (RQ3.1) made to predict
subjective properties of samples in order to make their outputs fairer, and we focused on the task of automat-
ically predicting the toxicity of sentences. We based our hypotheses on findings of the psychology literature.
There are several variables which correspond to the personal background of each person, namely the age,
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metric X̄1 X̄2 X̄1 − X̄2 texp tth significance

ADR_discr_0 0.9386 0.9264 0.0122 8.1394 2.2281, 3.1693 (+, +)
ADR_perf_0 0.5679 0.6127 -0.0448 38.2222 2.1448, 2.9768 (+, +)
ADR_discr_1 0.9551 0.9496 0.0055 7.5812 2.1788, 3.0545 (+, +)
ADR_perf_1 0.5939 0.6503 -0.0563 59.2549 2.1314, 2.9467 (+, +)
AS_discr_0 0.9006 0.8795 0.0211 20.8367 2.1098, 2.8982 (+, +)
AS_perf_0 0.5635 0.5794 -0.0159 47.9042 2.1098, 2.8982 (+, +)
AS_discr_1 0.8883 0.8701 0.0183 13.0858 2.1199, 2.9208 (+, +)
AS_perf_1 0.5677 0.5844 -0.0167 34.3179 2.1098, 2.8982 (+, +)
AP_discr_0 0.8618 0.8298 0.032 20.9824 2.1604, 3.0123 (+, +)
AP_perf_0 0.5452 0.5510 -0.0058 14.1759 2.1199, 2.9208 (+, +)
AP_discr_1 0.9098 0.8946 0.0152 15.4435 2.1199, 2.9208 (+, +)
AP_perf_1 0.6051 0.6378 -0.0327 24.8570 2.1314, 2.9467 (+, +)
demog_discr_0 0.6960 0.6877 0.0083 1.4151 2.1604, 3.0123 (-, -)
demog_perf_0 0.5925 0.6358 -0.0433 32.9756 2.1098, 2.8982 (+, +)
demog_discr_1 0.8839 0.7892 0.0947 20.7016 2.1199, 2.9208 (+, +)
demog_perf_1 0.6359 0.6798 -0.0439 39.8457 2.1314, 2.9467 (+, +)
A 0.7714 0.7376 0.0338 5.4418 2.1604, 3.0123 (+, +)
P 0.8065 0.8263 -0.0198 40.5951 2.1199, 2.9208 (+, +)
R 0.7714 0.7376 0.0338 5.4418 2.1604, 3.0123 (+, +)
F1 0.7866 0.7698 0.0168 4.1217 2.1448, 2.9768 (+, +)

Table 5.4: Significance tests between model 1 trained with continuous user model, and model 2 trained with the OH user model. Com-
puted on all the test data. Models: LR, trained with balanced sampling of cluster annotation popularity, with individual annotations.

gender, education level, and ethnicity, which influence how somebody perceives the toxicity of a sentence.
Consequently we hypothesized that 1) augmenting the inputs of usual algorithms with these background in-
formation, encoded in a continuous or one-hot encoded ways, and training the corresponding models with
a 2) dataset which consists of sentences, judgements by different people and individual information of these
people instead of sentences and unique labels resulting from the aggregation of multiple annotations make
the models fairer. We further hypothesized that 3) optimizing the hyperparameters of the models on the fair-
ness performance instead of the accuracy performance also makes the models fairer. We also proposed to 4)
resample the training dataset by balancing it over one fairness aspect to help the model learn.

We verified the hypotheses by comparing the fairness performance of traditional models to the fairness
performance of our proposed models trained on the Jigsaw dataset, using significance tests, the models be-
ing instantiated with a Logistic Regression. We concluded that our hypotheses are correct: adapting Machine
Learning models to take into account the personal background of the person judging a sentence makes the
outputs of these models fairer than usual models (RQ3.2, RQ3.3, RQ3.4). Moreover, different resampling
methods enable to optimize different aspects of algorithmic fairness (RQ3.5). Even though this might not
enable to improve the accuracy of the models greatly, for example it is only improved of 0.02% for the pro-
posed model trained on the annotations in the AP-balanced dataset (0.68) compared to the traditional model
trained on the majority votes in the same dataset (0.66), it improves the fairness of their predictions. For
people who very often agree with the majority vote (64% of the users of our models), the accuracy is only
improved of 3% going from 0.71 to 0.74 ; but for the people who disagree between 30% and 40% of the time
with the majority vote (0.38% of the users in our case) and are usually ignored by the models (the accuracy
of traditional models is very low, around 0.59), the accuracy of the predictions is improved of 5% going up to
0.64%, what is an important improvement for them.

However, we observed a trade-off between the fairness of the models towards their different users, and
the accuracy of their predictions. This limitations are due to several reasons. The accuracy of the predictions
is limited by the prediction power of the classifiers used(trade-off between the complexity of the data to learn,
the number of features and number of training data available), and investigating more complex models such
a Deep Neural Networks could help improve the predictions. Moreover, the trade-off is also due to the fact
that the employed dataset does not contain ethnicity information whereas it is claimed to be an important
variable in the perception of sentence toxicity, and that even if it would contain this information, this set of
available background information is not enough to account for all the different subjectivities of the different
users. To overcome this limitation, it would be appropriate to investigate how to use identifiers of the different
users without employing a limited set of background information to describe them (Appendix C.2.1).



6
Conclusion

In this chapter, we start by discussing the work done in the thesis and draw conclusions to answer the main
research question. Finally we propose future work in consideration with our conclusions.

6.1. Discussion of current work
In this section, we analyse the pipeline of our system to highlight its potential strong points and limitations.

6.1.1. Focus of the work
Machine Learning (ML) is traditionally employed to perform classification tasks along properties which present
high-consensus, like the objective task of predicting whether a radiography shows a cancerous tumour or
not. Nowadays ML is also more and more used to predict subjective properties of content, such as predict-
ing whether a video segment is perceived as violent, whether an image is perceived as of aesthetic quality, or
whether a sentence written on the Web is judged toxic or not. We chose to specifically study the fairness of
the predictions of these ML models. To the best of our knowledge, this is a completely new focus in the field
of algorithmic fairness, since all other research focus on ML for the classification of people.

Although not all the hypotheses we proposed to answer the research questions and overcome current
limitations of the predictions were verified by the experiments, we laid the ground work of the study of algo-
rithmic fairness in the case of subjective properties classification. We consequently identified the areas which
require more work to be done and constituted baselines on which to further experiment.

6.1.2. Interdependence of the three entities in the system
The thesis work is organized in three major parts: the dataset collection via crowdsourcing, the algorithmic
fairness evaluation method and the adaptation of ML algorithms to the task of predicting subjective proper-
ties. We believe our approach combining these three areas is a strong and new point of our project.

Most research tackle solely one of the three areas in order to study or/and mitigate fairness of the pre-
dictions of ML models, what only enables to make small progress. These three areas are interdependent and
consequently if one of them is of poor quality in the pipeline, the quality of the others is affected. For example,
if the dataset collection step provides few or low-quality labels, the evaluation might be inaccurate because
there is not enough data to compute significant measures, or the ground truth data might not be correct or
might not contain all the possible perceptions of the subjective property. Researchers interested in improving
the fairness of the outputs would report on small increases in the accuracy of the predictions of their models,
but the models might output predictions which, although they correspond to the available ground truth data,
are actually invalid since this ground truth is incorrect or constitutes a biased evaluation set.

On the contrary, we decided to study the three areas together to overcome these shortcomings, with a
careful attention to reduce the influence of the possibly low-quality areas. We used a simple classifier whose
behaviour is well known in order to investigate new evaluation methods of algorithmic fairness. We chose a
state-of-the-art dataset to conduct our experiments, that is assumed to be of high-quality. We analysed it in
details in order to identify its possible limitations and improve it. We analysed extensively our proposed eval-
uation method and the algorithmic fairness of our proposed models applied to the post-processed dataset,
with many experiments, visualizations and significance tests on the outcomes of the models and evaluations.

79
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6.1.3. Computation and validity of the fairness metric
The process of evaluating ML models with the new algorithmic fairness evaluation method using cross-
validation is very time- and computing power- consuming but necessary when applying significance tests
because, contrary to the accuracy, the standard error of the measures can not be directly estimated from the
calculation of the metric over one group of data samples. However it would be relevant to investigate whether
this standard error (or standard deviation) can be derived statistically from the mathematical definition of the
metric, so that we could calculate the value without running the experiments multiple times.

It would also be relevant to investigate whether current fairness evaluation methods could be adapted to
our task, and in the case where they could be adapted, whether they would provide similar interpretations
about fairness of our multiple models to our measures of algorithmic fairness.

6.2. Conclusions
The predictions of ML models made to classify subjective properties of samples might be unfair for certain
people, what can have harmful consequences for these people. That is why we had set up to study how
fair these ML models currently are and how to increase their fairness (RQ). From the analysis of the models,
we identified three problems which participate to their unfairness. 1) Current crowdsourcing methods to
collect the datasets to train and evaluate the algorithms on create biased datasets which make the trained
models unfair (Chapter 3). 2) There is a lack of definition of fairness adapted to our task, and consequently
a lack of evaluation methods to evaluate algorithmic fairness (Chapter 4). 3) The architectures and training
processes of the algorithms are not adapted to account for users’ properties that are related to the subjectivity
of the sample property in the domain at stake, but only optimize accuracy, what does not enable to take into
account potential unfairness (Chapter 5). We tackled all these limitations in the thesis project.

Contribution 1: literature review. We proposed a comprehensive literature review of the different fields
related to the three limitations in order to identify the exact causes of unfairness and formulate new hypothe-
ses. The review enabled us to choose to study algorithms for the prediction of sentence toxicity because
psychology showed that sentence toxicity is a subjective property, and this task is very important in order to
limit the use of abusive language on the Internet. We selected to focus on dataset biases resulting from the
aggregation of the crowdsourced annotations by majority-voting because it is the most common crowdsourc-
ing method to ensure quality of the dataset. We found through literature what influences the perception of
a content as toxic on a personal level, namely the age, gender and education level of the person looking at
the content. Additionally, we found a state-of-the-art dataset (the Jigsaw dataset) and ML model (the Logistic
Regression), which are adapted to study the fairness of toxicity prediction models.

Contribution 2: identification of current limitations of crowdsourcing methods, and of solutions. We
analysed the Jigsaw dataset, and critically addressed the problem of dataset bias resulting from crowdsourc-
ing tasks. We showed that the aggregation of annotations ignores a majority of people’s line of thoughts
(RQ1.1), with 51% of the annotators disagreeing around 15% of the time with the majority vote and 4.5%
of annotators disagreeing at least 20% of the time. That justifies that the predictions of the ML models are
unfair towards most people if they only represent the majority vote. We searched how to collect valid percep-
tions of sentence toxicity by crowdsourcing, while mitigating the majority vote bias and keeping the cost of
the task low. Concerning the design of the crowdsourcing task, it was shown that although general crowd-
sourcing methods are applicable to the collection of annotations of subjective properties, techniques from
psychology could be included to improve the results (RQ1.2). Concerning the post-processing methods of
crowdsourcing results, it was proved that methods proposed in the literature are not appropriate to the cur-
rent task, and that although the methods which compute quality scores of annotators to identify the wrong
annotations (CrowdTruth framework) enable to remove spammers (which represent around 1.5% of the an-
notators), they do not enable to distinguish between the occasional mistakes of some annotators (estimated
at 2.5% of the annotators) and the valid annotations which reflect the minority opinion (estimated at around
10% of the annotations) (RQ1.2). Concerning the cost of the annotation collection, we proposed to select the
samples to annotate and the annotators by clustering the samples in meaningful ways, but we did not find a
proper algorithm to obtain such clusters. It was concluded that more research is needed to collect the differ-
ent perceptions of a subjective property via crowdsourcing with high-quality and at low-cost (RQ1.3). (RQ1)

Contribution 3: evaluation method for algorithmic fairness. Existing definitions and evaluation meth-
ods of algorithmic fairness are interested in algorithms which classify people and not in algorithms made to
classify samples according to the perception people have of the properties of the sample. Consequently, we
worked on a new definition focusing on the problem of accounting for personal perceptions instead of only
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presenting the perception of the majority. We defined an algorithm as fair when its prediction performance
are equal for each user (RQ2.1). Also, we proposed a method to characterize and evaluate algorithmic fair-
ness through clustering of the evaluation dataset into meaningful clusters on an annotation, user or sample
level, and verified it in the context of toxicity (RQ2.2, RQ2.3). (RQ2)

Contribution 4: adaptation of ML models. We then turned our attention to ML models, and showed how
to adapt them in order to make them output the different perceptions people have of a sample’s property.
We proposed to train the models with all the annotations instead of the majority vote, and to augment the
inputs of current algorithms with the properties of the user for who the algorithm is asked to make a pre-
diction (RQ3.1-3.4). Although it only increases the global accuracy of the models of 2%, it identifies the users
who are usually ignored (because they often disagree with the majority vote) and who consequently usually
receive predictions of very low accuracy (59% accurate), and it improves the accuracy of their predictions of
7%. It additionally helps reducing the disparities between the accuracy of the predictions made for users who
often agree with the majority vote and the annotators who often disagree, what reduces the unfairness of the
predictions: the users’ accuracies span between 59% and 72% for traditional models (13% range), against 66%
and 74% for our models (8% range). It is concluded that these modifications of the architecture and training
process of ML models increase the fairness performance according to our definition. (RQ3)
Contribution 5: resampling of the training dataset. Additionally, we listed a choice of different resamplings
of the training set into balanced datasets over different fairness-related criteria (RQ3.5) to help the mod-
els learn correlations in the data, and consequently maximize their performance according to the desired
aspects of algorithmic fairness. (RQ1,3)

To summarize, we proposed a new evaluation metric of algorithmic fairness specifically for algorithms
which realize classification of samples according to subjective properties. We concluded that targeted crowd-
sourcing can be used to collect properly balanced datasets of valid perceptions of subjective properties of
samples, possibly at low cost, provided that the task is well-designed and that the results are post-processed
appropriately. Finally we showed that ML models can be fairer according to our definition if their architecture
and training process are modified possibly using the fairness metric, and if they are trained on these datasets
collected via targeted crowdsourcing. Therefore the main hypothesis of the thesis which answers the main re-
search question RQ is verified. Current ways to build datasets using crowdsourcing and to train ML models
conduct to unfairness when classifying subjective properties, this unfairness can be mitigated by adapting
both the methods to collect the training set and to build the models trained on it.

A portion of the thesis work was published after the CrowdBias workshop of HCOMP2018 (Appendix E).

6.3. Proposition of future work
In this section, we propose future work in order to make the three parts of our system even more effective.

6.3.1. Application to different use-cases
The complete thesis work is based on systems for sentence toxicity prediction. However we aim at studying
the prediction of subjective properties of samples in general. Consequently future work should also address
the generalization of our method to other tasks which involve subjective properties. Mainly, the performance
of each entity in the system could be investigated in other domains. The creation via crowdsourcing of other
datasets, as well as the adaptation of the ML algorithms with features representing the different users’ charac-
teristics adapted to the task chosen, for example video segment violence prediction, should be investigated in
different domains to check for generalization of the pipeline. The fairness evaluation method should however
still be the same, we could simply check for its validity by comparing its expected and real performance.

6.3.2. Creation of a benchmark dataset
A benchmark dataset could be constituted to make the evaluation of the rest of the system independent of
the crowdsourcing method used to create the dataset. This is difficult because it is not possible to define
"expert annotators" when the property to annotate is subjective, but well-trained and trusted annotators
could be asked to provide the annotations. There is no available dataset containing both data samples and
annotations of the samples according to one subjective property, as well as information about the annotators.
Building such a dataset, possibly large enough to train ML and Deep Learning algorithms, would be a useful
contribution for both the Crowdsourcing and ML communities.

Two similar challenges would be to ensure that 1) every perception of the property on one sample and 2)
all the different types of annotators with their different lines of thoughts are contained in the dataset. Possibly
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one could investigate how many annotations per samples, and how many different annotators with what kind
of characteristics are necessary in a dataset to train algorithms with sufficient performance.

Additionally, there remains several questions to perform crowdsourcing task to gather data of subjective
properties (Chapter 3). For the case of a dataset of sentence toxicity judgements, we should investigate how to
make the crowdsourcing task design as clear as possible in order to eliminate all the causes of disagreement
among annotators except the subjectivity of each annotator. For example the type of context information to
precise for each sample to annotate, the selection of only one category of speech (racism, sexism, ...) and the
questions to ask the annotators could be investigated based on methods employed in psychology. We could
also collect annotations with more information about their annotators (ethnicity is an important variable
according to psychology). For the post-processing of crowdsourcing results, how to filter out invalid annota-
tions from valid but minority annotations remains a research question. For the collection of annotations at
low-cost, we could investigate how to cluster the samples and/or annotators meaningfully in order to spread
the collected annotations of certain samples or annotators to the rest of the elements of the cluster?

6.3.3. Adaptation of the Machine Learning algorithms
In our task, psychology literature points out variables which influence the perception of the property to anno-
tate. However, in prediction tasks of subjective properties where the variables influencing the judgements are
not known, it is not possible to make use of the characteristics of the annotators in order to adapt the predic-
tions to each of them. Consequently, it is worthy to investigate how to adapt the ML algorithms in these cases.
It is also useful in cases where these variables are known, but not specified for certain users of the system. To
solve these questions, we proposes to investigate hypotheses H5 and H6 formulated in Appendix C.2.1.

Concerning the training process of the ML models, another way to improve fairness could be to mod-
ify their training loss function in order to take into account the different fairness metrics. For example the
fairness metrics measuring the dispersion of cluster performance and/or the average performance could be
added as regularization parameters on which to optimize the models, so that fairness is taken into account
in the training process and not only in the selection of their hyperparameters and/or architecture.

Concerning the information used to train the models, we used features extracted from sentence samples
and features representing a user’s characteristics. However psychology literature highlights the importance of
the sentence context in the perception of toxicity. Consequently it would be interesting to evaluate and mea-
sure whether modifying the architectures and/or input features of the models to take into account the sample
context could improve the accuracy and the fairness of the predictions. This would require to create adapted
datasets containing information about the context of the samples next to the samples and annotations.

Finally, we did not investigate in details feature engineering to encode the sentence samples. However ex-
tracting additional features which give more information such as the category of speech of the sample might
help the training of the algorithms. This could be another direction to look into to increase the performance
of the algorithms specifically made for sentence toxicity prediction.

6.3.4. Introduction of an Active Learning process
Active Learning is a particular type of training process used when a large part of the dataset is unlabelled. It
consists in requesting annotators to provide labels for selected data samples, possibly selecting to maximize
the information that the labelled samples would bring to the training process. Considering that we aim for
the ML models to learn the subjectivities of each user, we need more data than the required quantity of data
when having one unique label per sample. The data are costly to obtain, and we need to target specific
users to collect their individual line of thoughts. Thus, Active Learning is an adapted training process for
our task. We could investigate how to adapt current methods for the selection of the samples to annotate to
the selection of the pairs of samples and users to obtain annotations on, what would enable to optimize the
trade-off between the cost of the crowdsourcing task and the performance of the models.

From Chapter 5, we identified dataset resampling methods to efficiently train the models. We could use
this information to proceed to the selection of the samples and annotators to ask for annotations, so that the
dataset is not resampled after but during the crowdsourcing task. That might enable to spare annotations
which would have been removed and to use these potential annotation power for missing classes.

Finally a last direction of research could be to investigate how this active learning process would perform
online. For example we could investigate whether it is feasible in a given time period to collect the needed
annotations to train the models with sufficient performance, especially considering that certain annotators’
type might be available rarely since they have rare characteristics, such as a person of 15 to 18 years old (age)
with a doctoral education (education level).



A
Analysis of the Jigsaw dataset

Here we list example sentences contained in the Jigsaw dataset, ordered according to the percentage of agree-
ment between the annotators (Table A.1).

A.1. Example sentences contained in the Jigsaw dataset
A.1.1. Examples of sentences in the dataset ordered by toxicity annotator agreement

Table A.1: Example sentences ordered by agreement between annotators.

%
agree-
ment

Majority-
vote

Sentence

50% "I HAVE A VANDAL BOT AND I AM WILLING TO USE IT IF I HAVE TO! I WILL BAN EVERYONE!"
"‘ ==Tesla stuff== Notice how all those “ugly American“ comments are merely part of Irismeister’s rant. ‘"
"****Wow, you’re so clever. So smooth. Stop being an ass so we can compromise!"
"The article is true, the Israeli policies are killing Arab children."
"==Hi!== How dare you mollify moderate modify my comments? I do not modify your comments to pages! I am not a shoe sock puppet,
I am a well-intentioned troll! I’m stone half the day, you know. By the way, what’s a sock puppet? Is that an American thing? "

60% toxic
"After the wasted bit on his sexuality, I haven’t read the above diatribe but one thing for ABSOLUTE certain: Never in the history of this
planet has Umberto ever been referred to as Humbert. It is this kind of lunacy that renders Wikipedia as a “fringe“ place for idiots to
play. Get serious....DW‘"
"Prior to Quickpolls, he would have been perma-blocked by now. Guess I’ll remove the block again. As soon as I get time, which will
probably be about November. If you’ve got any brains, you will let that particular troll sleep on. Best."

60%
non-
toxic

"::If I pick enough holes in you, will you turn into swiss cheese? ‘Ed"

"I will tell you to stop.You think you a famouces.I Know you,I Know you Working to ISIS.I Send to CIA To Capture you."
"== Get lost vandal! == Stop removing the notability tag from Steve Rackman. He’s not notable and you know he’s not notable! Stop
making excuses and leave the tag alone! Better still, send it to AfD!"

70% toxic

"Better believe it. At least I earned a Barnstar, Wikipedia’s highest honor, because I’ve been doing nothing but cleaning up your utter
nonsense. In a way, I have you to thank, but I’ve gone through hell helping to maintain this site because of you. You drop your pathetic
entries and run, never bothering to come back and fix anything. Your intelligence is suspect as is your taste in entertainment. Loser. I
STILL dare you to answer me. -"
"is the most evil wikipedian in the world I’ve ever seen."

70%
non-
toxic

"I fixed the link; I also removed “homeopathy“ as an exampleit’s not anything like a legitimate protoscience, or even half-legit. It’s
total pseudoscientific nonsense, and not taken seriously as many protosciences are. I’m willing to tolerate a sympathetic and historical
treatment of it on its own page, but pages about real science shouldn’t be littered with frauds."
":::Yeah, it’s kind of silly. Ha, no good deed goes unpunished."

80% toxic "“‘Nazi filth“ is impolite‘"
"Master Fag Mind your own damn biz those pages had no quarrel with you"
"Delete my 200 articles Whhore"
"I am a wanker who molests goats"

80%
non-
toxic

"Please relate the ozone hole to increases in cancer, and provide figures. Otherwise, this article will be biased toward the environmen-
talist anti-CFC point of view instead of being neutral. Ed Poor"

90% toxic "== renault == you sad little bpy for driving a renault clio which has no vaa voom so there and the mcflurry is made of shit"
"This user is the child of a whore."

90%
non-
toxic

"This: :One can make an analogy in mathematical terms by envisioning the distribution of opinions in a population as a Gaussian
curve. We would then say that the consensus would be a statement that represents the range of opinions within perhaps three standard
deviations of the mean opinion. sounds arbitrary and ad hoc. Does it really belong in n encyclopedia article? I don’t see that it adds
anything useful. The paragraph that follows seems much more useful. Are there any political theorists out there who can clarify the
issues? It seems to me that this is an issue that Locke, Rousseau, de Toqueville, and others must have debated... SR"
"== Why oh why... == You removed the trolls ANI section about Drmies.....WHILE I WAS EDITING IT, and I had collected almost 10
pictures from commons to use there. It was going to be such hilarious drama, you owe me my morning laughs....."

83



84 A. Analysis of the Jigsaw dataset

100% toxic "==You’re a motherfucking idiot== You’re stupid as all hell and know *nothing*! Butt out of the business of your superiors!"
"**Fuck you, you psychotic fanboy retard."

100%
non-
toxic

"== Japanese Scene == The largely neoclassical Japanese power metal scene should be mentioned somewhere."

A.1.2. Examples of sentences in the dataset ordered by Unit Quality Score
We give examples of sentences in the dataset ordered by Unit Quality Score computed on the binary labels
(Table A.2) and on the full labels (Table A.3).

Table A.2: Example sentences ordered by Unit Quality Score.

Unit
Qual-
ity
Score

Sentence

0.427 ‘::::Ce type est un sauvage , , ; et stupide ! (Livonian extinct in one article, living in another one.) ( ) .
0.428 lolololololol ur ghey
0.428 YOU WILL BE ASSIMALATED
0.429 == Nlu == Mayne ya knoe Nlu ain’t shyt,
0.429 == u smell 2 == its contaygius
0.429 ==Hmmmm== Cozy, ain’it? Rumors are you two chumps have go’n yer mits on some treasha, and I wanna piece of dat poie!
s
0.433

== WHY DID YOU EDIT THE ARTICLE ON KURDISTAN? == DID YOU READ THIS DISCUSSIONS BEFORE YOU MADE THE
CHANGES? They are adding silly things to the article.

0.433
Serendipodous by definition means...(ha!!) == diff Noticed your increasingly abusive comments at the Planetary Habitiability article,
thought I would mention something you missed: There an new article on Serendipodousosity and guess what, it simply means loser.
Hey can you be any more of a loser?

1.0

Regardless of how relevant or not relevant climbing the mountain is, that paragraph constitutes important historical background
material as to previous occupations on the mountain. If you move it around you are going to severely mess up the flow of the section,
for fairly little benefit. Yeah, it focuses much on the summit and upper flanks of Mauna Kea. In this case, there is no escaping it.
There are sources to one, and not to the other; moving everything around has so far only messed up flow and made it hard to read;
Nowiki’s idea of verifiability based on other Wikipedia articles is a confligation of WP:SOURCE (do not use Wikipedia as a source)
and would be immediatly removed come the FAC. All in all, the best course of action is to simply agknowledge the biase and move
on from there. The section is hardly the most important one in the article anyway.

1.0 I think the structure’s fine. What the word means should lead, then the core tenets, then other facets and aspects, then examples.

1.0
== hang in there == As a lurker on the FU pages I appreciate your attempt to bring a rational discussion to the pages. I am very
impressed by your ability to withstand the invitation to sniping and to keep your temper. It was more than I could do. thanks.

1.0
‘==The Redirect== I’m restoring the article per Talk:Tim Nordwind. Someone claimed Dan has no notability on his own, well, if that’s
true then the Larry Mullen Jr. & Adam Clayton articles should be redirects to the main U2 article too. ‘

Table A.3: Example sentences ordered by Unit Quality Score.

Unit
Qual-
ity
Score

Sentence

0.132

==Racial Policies/White Discrimination?== “There has been increasing discrimination against white running backs, defensive backs,
and receivers, who have been less and less visible for the last 25 years. In 2005, a minimal majority of offensive linemen are white.
Most quarterbacks, punters, and kickers are white, while almost all running backs, wide receivers, defensive backs, defensive line-
men, safeties, punt returners, and kickoff returners are black.“ These sentences are awkward, and fairly innacurate. There are a
number of very talented running backs and wide receivers of all ethnicities. There are also many punt returners and kickoff returners
of all ethnicities - I’d like to see where this person got their information. Moreover, to say that there is discrimination against one
group simply because it’s mostly filled by another ethnic group is innacurate. For us to write in an encyclopedic article that there is
discrimination, we should have some, you know, evidence of it. *If there are no sources, it is best to remove it.

0.134 ==Merry Christmas!== LOL! I’m a dog person myself, but what the heck, we can all get along! . . .and a Happy New Year too!
0.142 == You smartass == You read the Introduction to editing!!!

0.144
If it makes you feel better, we can reword the article to read “Lehi justified acts of terror against their enemies“ or somesuch, without
specifically using the word “terrorism“ in this context. (Btw, I’m puzzled as to how a defunct organization can still justify acts of
terror.)

0.145
==Quadell’s Sham Nomination== Thank you for having the balls to stand up to Quadell and tell him “No!, we don’t want convicted
sex offenders to have bureaucrat powers¡‘ Keep up the great work!

1.0 == media == Isn’t there an example in Wikimedia Commons that can be added here?
1.0 This page needs a bot to fix the ISBN numbers.
1.0 == Now do you see why I quit? ==
1.0 ::I think it’s OK.
1.0 O.K. I forgot myself at Zilina.
1.0 == November 2009 == subst:test1|Iraq national football team -
1.0 REDIRECT Talk:Munir Hussain (cricketer)
1.0 == nonsense == are you a boy or a girl
1.0 people use for simplification reason
1.0 == image === Replace http://en.wikipedia.org/wiki/File:Yohkohimage.gif with http://commons.wikimedia.org/wiki/File:TheSun.png
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A.2. General analysis of the Jigsaw dataset
Crowd workers informations In total, 4301 different annotators annotated the samples, from which 3591
have their background informations available. In Fig. A.1, we present the different bins in which the demo-
graphics information are classified, and the repartition of the workers into these bins. We plot in Fig. A.2 the
workers distribution over the three retained demographics. The demographics categories are not represented
equally in the dataset, which is normal since the crowdsourcing population is not representative of the whole
population. However, we have to account for this imbalance if we consider that toxicity perception is different
within each category.

(a) Age repartition (b) Gender repartition

(c) Education repartition (d) English native speakers repartition

Figure A.1: Presentation of the background information of the workers and their distribution in the pool of workers. The different
demographic categories are highly unbalanced.

Annotation information In total, 1598289 annotations are available for 159686 unique comments. Most
of the comments have 10 annotations, and never less than 8 annotations (Fig. A.3a). The repartition of the
number of annotations each worker gave is almost uniform for 0 to 400 annotations per worker, but a large
proportion of the workers made more than 400 annotations (Fig. A.3b).

The distribution of the toxicity score and toxicity labels are plotted in Fig. A.4. We observe that these repar-
titions are very unbalanced, what might be an obstacle to train the Machine Learning models accurately since
they would be biased towards the most represented class (non-toxic). We investigate in the next chapters the
effect of resampling the dataset to help the algorithms learn.

Analysis of the agreement between workers For each sample, we compute an agreement score considering
binary labels (toxic / non-toxic), the score being the largest number of annotations which are of a same label
divided by the total number of annotations for the sample. We present in Fig. A.5a the distribution of agree-
ment scores. Most comments have a high agreement rate, the average agreement over all the annotations
being 0.91761. However, there are still around 60000 comments with less than 100% agreement. It is for these
comments that we want to enable the algorithm predictions to be tuned to each individual crowd worker.
We further investigate in Fig. A.5b the agreement rate for the toxic and non-toxic comments separately (the
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Figure A.2: Multi-dimensional distribution of the crowd workers along their background informations. The different demographic cate-
gories are highly unbalanced.

(a) Repartition of the number of annotations per sample
(b) Distribution of the number of annotations per crowd
worker

Figure A.3: Analysis of the annotation distribution. Most samples have 10 annotations. Most annotators (around 450) provided a high
number of annotations (around 2400).

(a) Toxic/non-toxic comment annotations repartition (b) Toxicity judgements

Figure A.4: Distribution of the toxicity judgements. The classes are highly unbalanced.
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toxicity label considered is the label that the majority of annotators voted on, choosing toxic in case of equal
number of annotations for each class). The judgements for the comments which are seen as toxic by a major-
ity of people have an agreement rate which is more evenly distributed between 0.5 and 1 than the non-toxic
comments. Comments which are not toxic must be less ambiguous or the definition of non-toxic comments
might be clearer, while toxicity is a subjective property. Distinguishing between the annotators’ perceptions
would make the algorithms fairer since it would represent each annotator’s point of view.

Examples of sentences contained in the dataset are reported in the Appendix A.1.1, ordered by the per-
centage of agreement over the toxicity labels. We observe that the more agreement about the toxicity there
is, the more insult words are used in the sentences. The more non-toxic a sentence is judged, the longer it is,
probably because it contains useful comments.

(a) Agreement percentage distribution over the Jigsaw
dataset

(b) Agreement percentage distribution over the Jigsaw
dataset, divided among the two toxicity categories

Figure A.5: Analysis of the annotation agreement distribution. Most annotations for each sample have high agreement. However, the
annotations for the samples judged in majority toxic are more prone to disagreement than the ones of the non-toxic samples.

We also investigate the agreement rate distribution for each demographics category. First, we intended to
plot the distribution of the standard deviations over the annotations of a same sample for each demograph-
ics category. However, these results are not significant because the dataset is only constituted of one to three
annotations by workers of the same demographics for each sample. Instead, we decided to investigate how
close the annotations of the individuals are to the majority voting label for the whole population of the demo-
graphics he/she belongs to. We plotted for each demographics the distribution of agreement rate between
the annotations and the majority vote. However, this does not bring insights, we only observe that most of
each demographics annotations are equal to the majority voting of the annotation -because there are few
annotations per sample per demographics.

We finally decided to compute for each worker the average on which his/her annotations differ from
the majority vote of the whole population (worker average disagreement rate (ADR)). Then, we plotted on
Fig. A.6 the normalized distribution of this average within each demographics (from top to bottom, left to
right the most frequent to less frequent demographics). We observe that for most demographic categories,
the distributions are similar, with most of the workers always agreeing with the majority, and around 20% of
workers disagreeing 10% or more of the time with the majority vote. This shows that no specific demographic
category is disagreeing with the majority but part of the workers in each category is. Therefore, only using
these demographics as features to predict toxicity perception might not be enough to represent the workers.
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Figure A.6: Normalized distribution for each demographic category of the average disagreement each worker has from the whole popu-
lation majority voting. The x-axis corresponds to the value of the ADR with the majority-vote, the y-axis corresponds to the proportion
of the population within the demographic category for which the annotators have a specific ADR value. Only the 25 most frequent de-
mographic categories are represented, the other ones show similar results or only one bar of full agreement between the annotators. All
the demographic categories exhibit a similar distribution of ADR with the majority-vote.



B
Algorithmic fairness evaluation method

B.1. Expected behaviours of the different models
In this section, we list the behaviours related to fairness that we expect to observe on the predictions of the
different models.

Behaviours for user-level fairness. We expect the fairness of models (1) and (2) to be low. They do not
distinguish between the annotations but are fed with majority vote (MV) labels or the whole dataset (with a
majority of MV annotations) and consequently are expected to return the MV label. For annotators who often
agree with the MV, the performance of the models will be higher than for the others, what is unfair towards
the annotators with opinions belonging to the minority. On the contrary, for models (3) and (4) which aim
at distinguishing between users, we expect the algorithms to be better than models (1) and (2) at returning
predictions corresponding to each annotation and not to the MV. Since model (3) only uses demographic
information and we saw in the previous chapter that it is probably not sufficient information to distinguish
between the opinions of the annotators of a same category, there should still remain unfairness. Especially
for the annotators whose annotations often differ from the majority vote of each category, the performance
will still be low. We expect model (4) to be the most fair for annotators which are known during training since
it should return their specific annotations accurately, and the performance are expected to be the same as the
performance of models (1) and (2) for the unknown users since no distinction between them is made. The
proportion of high-accuracy predictions for each user should increase from models (1) to (4).

Behaviours for sample-level and annotation-level fairness. Sample-level fairness is studied by compar-
ing the prediction performance of the model for each sample’s set of annotations. Annotation-level fairness is
studied by comparing the prediction performance of the model for each annotation. If we identify on which
type of annotation and/or type of sample the model perform high or low, it would also give indications on
the causes of unfairness. The expected observations for the user-level, sample-level and annotation-level
fairness are similar. For models (1) and (2), we expect the samples for which the agreement between the an-
notations is high to receive high performance while the ones for which the agreement is low should receive
low performance since only one unique label will be outputted by the models whereas several different anno-
tations are expected. If we group the annotations according to their percentage of "popularity" among all the
annotations of one sample (rate of the number of equal annotation to the studied annotation among all the
annotations for one sample), we expect the two models to be accurate for the high-popularity annotations
since they correspond to the opinions of the majority and that is the labels the algorithms are trained on.
For models (3) and (4), we expect the performance for each sample to increase, and the performance among
the different bins of annotations to become more similar, since the models should be able to distinguish be-
tween annotators and predict the individual annotations (including the annotations of the minorities). For
model (3), samples for which the annotators disagree the most should obtain higher performance, for model
(4) these performance are expected to be even higher for samples on which known users gave annotations.
For samples annotated by unknown users, we do not expect change compared to the first two models. The
proportion of high-performance predictions for each sample should increase from models (1) to (4).

Behaviours for discrimination-related fairness. A model is considered unfair from a discrimination
point of view when its prediction performance are different for different categories of population, for the dif-
ferent demographic categories (by age, gender and education level) in the Jigsaw dataset. For models (1) and
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(2), we expect that the performance are similar for most of the demographic categories since it was observed
in the previous chapter that almost each demographic category has a similar disagreement distribution with
the majority vote. For models (3) and (4), the outputs are expected to be closer to the expected annotations.
The demographic categories which have more data in the dataset are expected to have higher performance
than the other ones since the algorithms should learn better to distinguish between the annotators. How-
ever, for model (3) there should be a maximum-accuracy limit since it is only able to return one label per
demographic category, and the difference with models (1) and (2) outputs might not be large since the ma-
jority vote of each category might already accurately enough represent the annotations of each individual
in the categories. For model (4), we expect the performance for the most frequent demographic categories
to be higher than for the other set-ups since the known users should have more accurate predictions. If the
training dataset is balanced over demographic categories, each category should have similar performance.
Otherwise, the most frequent categories are expected to have higher performance.

B.2. Characterization of algorithmic fairness
In this chapter, we present experimental results and figures we used to investigate the different possible char-
acterizations of the fairness of Machine Learning algorithms.

B.2.1. First batch of experiments
We first investigated general characterizations of algorithmic fairness. These first experimentations enabled
us to refine the characterizations in the next subsection.

Scope of the experiments
For the different fairness aspects, we divide the test set according to the different clustering criteria, and
we plot the performance of the model on the different clusters for each performance metric usually used to
evaluate Machine Learning algorithms. We only make the experiments on the models (1), (2) and (3) because
model (4) is not compatible with the Logistic Regression.

Results
The results of the first batch of experiments are grouped into plots similar to Fig. B.1. Since there are many
plots, and some are very similar to each other, we only describe the results instead of reporting all the plots.
The heatmap plots represent the model performance computed taking the individual annotations as ground
truth. Each column corresponds to an evaluation metric on the training or test set. Each heatmap is di-
vided into two parts vertically, on the left the metrics are computed on the annotations whose annotators’
demographic information are known and on the right on the annotations whose annotators’ information are
unknown. The horizontal divisions represent the different clusters on the different clustering criteria.

User-related fairness On Fig. B.1 the clusters correspond to clusters of annotators depending on their aver-
age disagreement with the majority vote. The top clusters correspond to high disagreement and the bottom
clusters to low disagreement, so the top clusters are expected to get lower performance than the lower clus-
ters. As expected the workers with a higher agreement with the majority vote receive higher performance
than the workers with low agreement with the majority vote for each model. The performance using model
(3) for the low quality workers increases, what was also expected. Similar observations are made when us-
ing the CrowdTruth Worker Quality Score. Therefore, we conclude that these visualizations are meaningful to
interpret one possible cause of unfairness of the models. These clustering criteria are "human-interpretable".

Sample-related fairness We proceed to the same experiments with clusters of samples depending on the
ambiguity score. The top clusters correspond to low ambiguity and the bottom clusters to high ambiguity (low
agreement over the labels of the sample), so the top clusters are expected to get higher performance than the
lower clusters. This is the behaviour we observe on the F1-score and the accuracy plots for example. However,
the F1-score, the precision, recall and AUC values exhibit very small variations in between the clusters in
comparison to the performance computed with the accuracy, and thus these metrics seem to be less adapted
to study fairness. Therefore, to study sample-level fairness, we decide to investigate only accuracy (and F1-
score only to verify that it is not significant mathematically). The performance’s difference observed between
the models distinguishing or not between users is very small. It could be that model (3) do not improve
fairness regularly according to this clustering criteria or simply that the difference of performance across
clusters is low and nothing can be observed. The observations are similar on the UQS clustering criterion.
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Discrimination-related fairness Finally we draw the heatmap of clusters of the demographic categories
present in the dataset.In general there does not seem to be large differences in performances in-between the
clusters, except for a few clusters which differ by 30% on the accuracy. This characterization shows that as
expected the discrimination power of the models is low but still existent for a few categories.

Conclusion: choice of a small number of evaluation metrics
First of all, we note that the observations appear clearer on the accuracy evaluations than on the other met-
rics. For example, the accuracy value in each bin from the high-agreement to low-agreement workers de-
creases along the bins whereas for the other metrics the evolution of the values is not linear. Therefore, we
choose to work on the accuracy in all the following chapters, even though the fairness metrics proposed af-
terwards could be implementing using any of the metrics above (it depends what the purpose of the person
implementing the algorithm is).

Moreover, the plots for the F1-score, precision, recall, and AUC are similar. We do not study the Spearman
correlation because it is not meaningful to evaluate binary labels (with a binary ground truth) with it. We
decide to retain the F1-score since it is a combination of the precision and recall and thus should give an
information on both, and it takes into account class imbalance in its evaluation more than the AUC.

B.2.2. Second batch of experiments
Characterization on a sample-level Fig. B.2 present the performance of the models on a sentence level.

Clustering on the user-level (ADR, WQS, demographic) The characterization based on the average dis-
agreement rate with the majority vote is plotted in Fig. B.3. As expected, low disagreement (bottom of the y-
axis) leads to higher performance compared to the higher-disagreement clusters. Both F1-score and accuracy
heatmaps show differences between the models: model (3) tends to perform better on middle-disagreement
data than model (1).

Concerning the characterization based on clusters formed according to the Worker Quality Score, the
workers with a high quality (top of the y-axis) get higher performance compared to the low quality worker,
because the quality of the workers is computed in relation with the agreement of their annotations with the
other workers’ annotations. As expected, both accuracy and F1-score show differences between the models:
model (3) performs better than model (1) for all types of workers except the lowest quality clusters.

The expected behaviours are also observed on the demographic-related plots (Fig. B.4). Except on a few of
the demographic categories, most of the categories exhibit similar performance, what was expected, so this
evaluation method is valid to highlight discrimination-related aspects of unfairness.

Clustering on the annotation-level (AP) As expected, the clusters of the most popular annotations have
higher performance than the ones with lower popularity for both the accuracy and F1-score. The F1-score
shows improvements on the less popular clusters with model (3), consequently it is a meaningful characteri-
zation. Analysing the total accuracy does not exhibit differences between models (1) and (3), contrary to the
analysis of the accuracy performance on each class. On the negative class which is dominant in the dataset,
there are few differences between the two models, but on the positive class we observe that model (3) has a
slightly higher accuracy on both popular and unpopular annotations. We are interested mainly in recognizing
the positive class, therefore this clustering criteria seems to be a valid characterization.

Clustering on the sample-level (UQS and AS) We expected high-UQS data to receive higher performance
than low-UQS data because the high quality is a sign of high agreement among annotations and therefore
of easier labels to learn. However, the performance in each cluster do not follow a linear evolution which
means that the UQS might not represent disagreement in a way that we can interpret easily. Concerning the
performance evaluation based on the ambiguity score, although we observe a general trend of having higher
performances for clearer sentences (sentences with high-agreement on the label), the evolution between the
clusters is not exactly linear for low-agreement samples. The observations are similar for both the AS and UQS
which are computed similarly, consequently the representation might give valid insights into the potential
unfairness, even if they slightly differ from the expected behaviours (it might be that certain annotations on
certain samples are less present in the dataset and so harder to learn).
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(a) Model 1

(b) Model 2

(c) Model 3

Figure B.1: User-level binning: average disagreement with the majority-vote bins.
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(a) Global accuracy (b) Accuracy for the negative class.

(c) Accuracy for the positive class. (d) Global F1-score.

Figure B.2: Visualization based on the sentence-level performances. Comparison of models (1) (red) and (3) (green).

Figure B.3: Visualization of the accuracy and F1-score based on the ADR clustering criteria. Comparison of models (1) (left) and (3)
(right).
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Figure B.4: Visualization of the accuracy on class 0 (non-toxic) and class 1 (toxic) data, based on the demographic clustering criteria.
Comparison of models 1 and 3.
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B.3. Investigation of the possible fairness metrics
Fig. B.5 shows the results of the experiments on the variables of the discrimination related fairness metric.

(a) Experimentations on the F1-score with
model (1).

(b) Experimentations on the F1-score with
model (3).

(c) Experimentations on the accuracy with
model (1).

(d) Experimentations on the accuracy with
model (3).

(e) Experimentations on the accuracy of the two
classes with model (1).

(f) Experimentations on the accuracy of the two
classes with model (3).

(g) Experimentations on the accuracy of the
positive class with model (1).

(h) Experimentations on the accuracy of the
positive class with model (3).

Figure B.5: Experimentations on the discrimination-based fairness computed with different evaluation metrics (F1-score, global accu-
racy, accuracy on the positive class, separated accuracy on the two classes). The x-axis of these plots represents the minimum number
of annotations that a demographic category should have to be maintained in the test set.
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B.4. Investigation of the significance of the performance of the clusters
Experimental set-up
We compute the significance test over the performance of model (1) since it is the model which should ex-
hibit the most unfair behaviours. The metrics showing the most unfairness are the metrics which should be
chosen since model (1) is a baseline not adapted to solve possible unfairness and we aim at highlighting its
unfairness. The ADR-related fairness is based on the average performance value for each cluster, the average
being computed over the performance of each user of the cluster. We consider that each user’s performance is
a sample of a population -the population being all the members of a cluster-, and we pose the null hypothesis
H0 "two populations from two different clusters are the same". We perform a significance test between the
populations in order to verify or refute the null hypothesis. Unfairness corresponds in our case to different
performances among the different clusters and consequently to rejection of the null hypothesis. Since the
populations are not normally distributed (as shown in Fig. B.6), we choose to use the Kolmogorov-Smirnov
test. It usually requires at least around 20 samples per population to compute significant results. We choose
the common alpha value of α= 0.05.

Figure B.6: Histogram of the user’s positive class accuracy of the lowest disagreement bin for model (1). These accuracies are not normally
distributed.

Results of the significance tests
ADR-related fairness. We divide the dataset into 10 clusters. Since the populations are not large enough for
the cluster ranges between 0.5 and 1, we decide to group all of the users in these clusters and redo the compu-
tations with these new clusters, using the true positive rate as performance metric of each cluster. The results
are reported in Tables B.1 (statistical value) and B.2 (p-value). We see that most of the p-values are under α,
what leads us to reject the null hypothesis and to say that for most of the clusters the average accuracy dif-
ference is significant. We conclude that it makes sense to compute the dispersion between clusters in order
to measure unfairness. Using 10 clusters with the true positive rate gives significant comparisons. We do the
same computations on the negative class. All the returned p-values are higher than the α value. We conclude
we can not only use the accuracy on this class to study fairness. We replicate the calculations with the total
accuracy over the two classes. It leads to the same conclusion as for the accuracy on the positive class. The
calculations on the F1-score comprehend more values which do not reject the null hypothesis. Therefore we
conclude that we can base our calculations on a combination of the true positive and true negative rates.

Ambiguity score-related fairness. We apply the same significance tests on the ambiguity score clustering
criteria, using 5 clusters because one cluster out of 2 has less than 10 samples. Only few of the cluster values
are refuting the null hypothesis using the true positive rate. This might be explained because only computing
the accuracy on the positive class is not significant when there is only one positive annotation for the sample.
For the accuracy over the two classes, all the results refute the null hypothesis.

B.5. Application of the algorithmic fairness metrics to the models
We apply the final fairness metrics to the models (1) to (3) to make a final verification on whether the fairness-
related behaviours expected on the different models are exhibited by the metrics. The results are reported in
Fig. B.7, B.8.
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bins 0.1 0.2 0.3 0.4 0.5 06

0.1 0. 0.0358 0.122 0.2024 0.274 0.373
0.2 0.036 0. 0.097 0.167 0.249 0.348
0.3 0.122 0.097 0. 0.080 0.152 0.252
0.4 0.202 0.167 0.080 0. 0.094 0.193
0.5 0.274 0.249 0.152 0.094 0. 0.107
0.6 0.373 0.348 0.252 0.193 0.107 0.

Table B.1: T-value of the significance test between each ADR bin of configuration (1) on the positive class, on the reorganized bins. NA
corresponds to tests where one of the two bins is empty - the computation is not effectuated. The bin values indicated in axis are the
upper value of the range (each bin having the size 0.1 average disagreement).

bins 0.1 0.2 0.3 0.4 0.5 06

0.1 1.0 8.761e-1 1.578e-3 7.675e-6 3.297e-7 2.932e-3
0.2 8.761e-1 1.0 2.173e-2 4.107e-4 4.947e-6 6.862e-3
0.3 1.578e-3 2.173e-2 1.0 3.238e-1 2.081e-2 1.063e-1
0.4 7.675e-6 4.107e-4 3.238e-1 1.0 4.756e-1 3.831e-1
0.5 3.297e-7 4.947e-6 2.081e-2 4.756e-1 1.0 9.713e-1
0.6 2.932e-3 6.862e-3 1.063e-1 3.831e-1 9.713e-1 1.0

Table B.2: p-value of the significance test between each ADR bin of configuration (1) on the positive class, on the reorganized bins. The
bin values indicated in axis are the upper value of the range (each bin having the size 0.1 average disagreement). In bold are the values
which make the null hypothesis rejected.
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Figure B.7: Comparison of the performance of the 4 models, based on the two separate classes and both classes accuracies. The models
using users’ information as additional features perform better than the other models for most algorithmic fairness aspects.
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Figure B.8: Comparison of the performance of the 4 models, with variation of the disagreement rate in the test set. (number of demo-
graphics categories = [64 17, 13, 8, 5, 5, 3, 3, 2, 2].)
For datasets containing disagreement, the models adapted to the different users perform better on each algorithmic fairness aspect than
the models which do not use a users’ model.





C
Experimentations on the Machine

Learning and Deep Learning algorithms

C.1. Evaluation of the baselines
To verify the efficiency of the algorithms, we compare the results of our implementation on the Jigsaw dataset
to the performance given in the literature. We divide the Jigsaw dataset into a training (80% of the data) and
test set (20% of the data) and respectively train and test the algorithms on these sets. Similarly to the Jigsaw
team [111], we compute for each of the models the standard 2 class area under the receiver operating charac-
teristic curve (AUC), and the Spearman rank correlation. The AUC is evaluated between the models’ predicted
probability that the comment is toxic and the majority-vote label (MV) of the comment. The Spearman rank
correlation is computed between the models’ predicted probability of being a toxic comment and the fraction
of annotators who considered it as toxic (called ED label in the tables). Additionally, we evaluate the mod-
els’ performance using traditional metrics (precision, recall, F1-score and accuracy) using the majority-vote
labels as ground truth.

C.1.1. Machine Learning
We present the performance of the Logistic Regression classifier in Table C.1 trained with the binary labels
aggregated by majority voting.

wor d −embed . char.−embed .

tr ai n test tr ai n test

precision
tot al 0.9368 0.9198 0.8407 0.8420

cl ass0 0.9599 0.9583 0.9430 0.9435
cl ass1 0.9368 0.9198 0.8407 0.8420

recall
tot al 0.6112 0.5906 0.4396 0.4390

cl ass0 0.9956 0.9946 0.9911 0.9913
cl ass1 0.6112 0.5906 0.4396 0.4390

F1-score
tot al 0.7398 0.7193 0.5773 0.5771

cl ass0 0.9774 0.9761 0.9664 0.9668
cl ass1 0.7398 0.7193 0.5773 0.5771

accuracy 0.9585 0.9559 0.9378 0.9385

Table C.1: Logistic Regression classifier performances (metrics in row) on the training and test sets, trained with two different feature
vector types (word-embedding and character-embedding). The performances are given on the full data as well as computed on a class
level (class0: non-toxic, class1: toxic).

With the Jigsaw toxicity dataset, we draw the same conclusions as the Jigsaw team which reported results
on the aggressiveness dataset. The order of magnitude of the performance that we find is the same as the
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performance reported in the Jigsaw paper [111], while the performance are higher than the ones reported
in [50] but they used a different dataset. Besides, we notice that using the character-level features leads to
higher performance than the performance with word-level features, which is probably because character-
level features have a higher level of details.

C.1.2. Evaluation of other classifiers
We evaluated two additional models identified in the literature review. We trained the Multi-Layer Percep-
tron and the LSTM Recurrent Neural Network presented in [50] with the Word2Vec data embedding on three
different types of training data: majority-vote labels (MV), ED-aggregated labels (ED) and the disaggregated
annotations (DA). The ground truth used to evaluate the algorithms is the majority-vote labels (and ED labels
to compute the Spearman correlation).

We find higher performance than in the paper [50] but the performance are computed on different datasets.
As it was shown for the traditional Machine Learning algorithms by the Jigsaw team, training the algorithms
on the ED data increase the performance. On the contrary, training the neural networks on the disaggre-
gated annotations decreases the performance, probably because it "confuses" the algorithm which does not
specifically learn the majority-vote label. Training the same neural network on a dataset with balanced classes
decreases the performance probably because it reduces the number of training data available too much. Us-
ing three labels for training also does not help the algorithm to learn, the performance are lower than for the
initial set-up, probably because there are not enough data to learn the three labels accurately.

These two models would merit being investigated in future work because they present higher perfor-
mance than the Logistic Regression.

C.2. Hypotheses to mitigate unfairness
C.2.1. Additional hypotheses for future work
Transformation of the input samples using the annotators’ unique identifiers
As seen in the literature, research is done to learn matrices to transform the inputs of neural networks de-
pending on an additional variable related to the input. In our case we formulate the following hypothesis:
learning annotator-specific parameters to transform the inputs of traditional algorithms enables the algo-
rithms to output the different opinions on one same sample. (H5)

Precisely, we propose the following modification of the input. The input is usually a sentence si and possi-
bly an information about the person who is annotating the sentence a j . The sentence is a succession of words
si = [w1, w2, ..., wN ]. Each word wk is represented with a continuous representation (a word embedding is
chosen) so that wk ∈Rd , d being the dimension of the word representation. We represent the annotator as a
matrix such as a j = A j ∈ Rd×d . As explained in [104], A j is too large in practice even if d = 50 only. Thus, we
proceed to the same decomposition as they perform: A j = A j 1 × A j 2 +di ag (a∗) with A j 1 ∈Rd×r , A j 2 ∈Rr×d ,
di ag (a∗) ∈ Rd a diagonal matrix common to each annotator, and r a chosen dimension with r < d . Finally,
we transform each word wk for the specific annotator a j with the following calculation in a new word tk j

such that tk j = t anh(A j ×wk ) = t anh((A j 1 × A j 2 +di ag (a∗))×wk ).
These new inputs are fed to the Deep Learning model presented in the previous section. To learn the

matrices A j , they are initialized with specific values or randomly and they are trained during the training
process of the model by backpropagation. We use regularization with the norm of A j 1, A j 2, di ag (a∗) in the
loss function. In [104], the hyperparameters are set to the following dimensions: d = 100, r = 3.

Running the experiments explained in Chapter 5, we quickly run into memory issues when training the
model with over 3000 different users. Therefore we propose to group the users into bins and learn matrices
specific to these groups instead of to the individual users.

This model should perform better on the known users with many example judgements since it does not
require specific information (which might not be enough) to return output adapted to each user. However, for
unknown users it is not able to return user-adapted judgements but only makes use of the general diagonal
matrix to transform the inputs. Moreover it is more memory- and time- consuming to train it compared to
the previously presented algorithms.

Combination of the augmented features and annotators’ identifiers
Seeing the drawbacks of the previous two propositions, we propose to combine them to avoid each of their
disadvantages by balancing them with the other model advantages. Therefore, we make the following hy-
pothesis: combining the two above hypotheses (input-augmentation with users’ demographic information
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(H2) and input-transformation with users’ identifiers (H5) enables the algorithms to output the different
opinions. (H6). This model should enable to generalize to 1) unseen users better than when only using the
users’ input transformation matrices, and to 2) users without demographic information better than when
only using this information. However it remains memory- and time- consuming to train and evaluate.

Regularizing the loss function with the fairness measures
The parameters of the Machine Learning models are optimized by minimizing the value of a loss function.
The loss function is parametrized by these parameters, and consists in a computation over the training data
samples and labels. For example the Logistic Regression measures the gap between the predicted labels (com-
puted by the model) and expected labels of the data samples in the training set, and the Support Vector Ma-
chine makes computations involving both the data samples and labels. During the training process, we could
possibly add the weighted sum of the fairness values computed by the model over the training data as a reg-
ularization parameter in the loss function. This would enable to take into account fairness when optimizing
the parameters of the model, and not only the performance accuracy. As it takes time to implement the new
loss function in the different classifiers, this is out of scope of the thesis project but it could be a future work
to experiment on.

C.2.2. Summary of the hypotheses and experiments
We summarize in Table C.2 the hypotheses made with the purpose to make Machine Learning models fairer.

Pipeline step Identifier Hypothesis

Data aggregation H1
Using the disaggregated annotations instead of the aggregated labels to train the models make them fairer since they
would otherwise not be able to learn the judgements of the different users.

Model architecture H2

Adding as input to traditional classifiers the annotators’ demographic information that psychology literature defines as
influencing variables for toxicity perception enables the models to output the judgements of each annotators of the sam-
ples.
Annotators’ demographic information can be encoded with the following methods:

H2.1 One-hot encoding of the three variables and concatenation of these 3 representations.

H2.2
Continuous representation (e.g. between [0;1]) of each variable according to the available variable ranges in the dataset and
concatenation of these 3 representations.

H5
Learning annotator-specific parameters to transform the inputs of traditional algorithms enables the models to output
the different judgements on one same sample.

H6
Combining hypotheses (H2) (input-augmentation with users’ demographic information) and (H3) (input-transformation
with users’ identifiers) enables the models to output the different judgements.

Model training
process

H3

Tuning the hyperparameters of the models with grid search using the fairness measures as the performance metric to
optimize, and choosing the number of data features and training data according to the learning and feature curves plotted
using the fairness measures increase the fairness of the models compared to models whose hyperparameters and training
data are chosen using the classical performance metrics.

Dataset H4
Balancing the training dataset over one of the clustering criteria used to study the multiple fairness aspects increases the
fairness performance of the models trained with this resampled dataset.

Table C.2: Summary of the hypotheses to make the models fairer

There are many experiments to run considering that we selected several Machine Learning algorithms
to investigate at the beginning of the chapter. We summarize in Table C.3 the experiments that we should
proceed with.

Dataset distribution
Annotation aggre-
gation

Machine Learning model
Grid search met-
rics

clustering cri-
teria

resampling classifier input type

ADR balanced
aggregated with
majority-vote

Logistic Regression sample features accuracy

AS original disaggregated
Support Vector Ma-
chine

sample features + one-hot demo-
graphic

combined fairness

AP Multi-Layer Perceptron
sample features + continuous de-
mographic

demographic neural network
sample features + annotators’ iden-
tifiers

Table C.3: Theoretical list of experiments.
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C.3. Determination of the grid search performance metric
To get an idea of how the different performance metrics available (accuracy, F1-score, precision, recall, dis-
persion and general performance with the four fairness aspects) would influence the choice of the hyper-
parameters during grid search, we plotted in Fig. C.1 the performance measured during grid search of the
hyperparameters of the Logistic Regression trained on disaggregated data with additional one-hot encoded
demographic inputs. We noticed that accuracy, F1-score, precision and recall point out to similar hyper-
parameters ; the dispersion side of the fairness metrics show similar performance trends and the general
performance side of the fairness metrics generally exhibits opposite trends. These similarities lead us to only
study the accuracy as a baseline against the hypothesis 3, and to only select the fairness measures based on
the annotators’ Average Disagreement Rate (ADR) with the majority-vote as a base for H3’s computations (it
is also the main aspect of fairness).

The dispersion and general performance results found with the annotators’ ADR would lead to very dif-
ferent choices of hyperparameters. We aim at increasing the fairness of the models but the models’ accuracy
should not be close to zero because they would not have any use. Consequently we combine both measures
to perform the selection of hyperparameters. There are different ways to compute the mean of two values:

• Average mean.

• Harmonic mean.

• Average of the differences of the measured performance to the average performance over the grid. This
could enable to quantify how much improvement or decrease compared to the average each hyperpa-
rameter enables.

• The dispersion and general performance metrics do not represent the same notions although they are
both in range [0;1]. Consequently, it might not be meaningful to combine their values by using the
mean. In order to get values independent of the notion represented by the metric, we propose to trans-
form the values in each grid with the following computations. After computing the average mean and
standard deviation of the grid measures, we calculate for each grid value the number of standard de-
viation in the absolute value difference between the value and the mean ( xvalue−µ

σ with xvalue the grid
value, µ the grid mean and σ the grid standard deviation). The number of standard deviation is inde-
pendent of the studied metric.
We investigate the following variants to combine the transformed values:

– Average of the two values. Since the values are numbers without units, adding them together gives
meaningful results.

– Normalization of the values by dividing them with the maximum (computed with absolute values)
number of standard deviation in the grid, and average of the values. The normalization might
make the dispersion and general performance values more comparable in case they generally
have very different standard deviations.

– Weighted average of the normalized number of standard deviation. Several weights can be tested
to give more importance to the dispersion or general performance aspect of the metric.

We show in Fig. C.2 the results obtained with these different combinations of the dispersion and general
performance measures. We observe that the results of the first three propositions exhibit the same trends
but that the values computed with the harmonic mean exhibit larger ranges of variations than the others.
The variants of the last proposition also show similar trends except when the weights of the weighted average
are too close to 0 or 1 because only one of the two metric is influencing the results. It is hard to define what
the best combination is because it depends mainly on which aspect (dispersion or general performance) we
prioritize. We decide to use the last proposed combination of values with a weight of 2

5 for the dispersion
and 3

5 for the general performance because further experiments proved these weights adapted not to choose
hyperparameters which return models with high fairness but very low accuracy.

We additionally plotted separately the grid search results for the combination of the two fairness measures
on the four different aspects of fairness. The hyperparameters selected with the four different aspects are all
different. Consequently, as future work we could investigate the combination of several aspects of fairness to
select the hyperparameters during cross-validation, in order to take into account all these aspects by order of
preference.
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Figure C.1: Grid search over the hyperparameters of the Logistic Regression, model evaluated with the usual performance metrics.
The different metrics conduct to the selection of very different hyperparameters. However, the influence of the hyperparameters on the
performance of the models is shown later to be small.
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Figure C.2: Combinations of the dispersion and general performance values based on the annotators’ Average Disagreement Rate with
the majority-vote, on the results of the grid search over the hyperparameters of the Logistic Regression.
The different combinations lead to the selection of very different sets of hyperparameters.
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C.4. Method to resample the dataset
The pseudo-code is given in Algorithm C.1. First we define the total number of annotations Na that each
fold should contain, by maximizing this number considering the annotations and their associated clustering
criteria values available. Some demographic categories have very few annotations, we decide to remove the
less frequent categories in order to obtain a large enough dataset and we keep the 39 largest demographic
populations (populations for which the number of toxic and non-toxic annotations is above 500). We choose
Na = 1029 because we estimate that this should enable to constitute large enough training and test sets since
9 times this quantity of annotations are used in the training set. Then we resample the datasets according to
the different hypotheses so as to have Na annotations per new dataset.

Algorithm C.1 Dataset resampling
function COMPUTE_DISTRIBUTION(d at aset ,cluster i ng _cr i ter i on)

if clustering_criterion = demographic then
d at aset ← remove less frequent demographic populations.
d at aset_cluster s ← cluster dataset’s annotations according to the annotator’s demographic.

else
d at aset_cluster s ← cluster dataset’s annotations on cluster _cr i ter i on into 5 bins.

end if
d at aset_cl uster s ← divide bins of d at aset_cluster s into 2 bins for the 2 classes.
return di str i buti on ← compute the distribution of the bins in d at aset_cluster s.

end function

function COMPUTE_FOLD_SIZE(d at aset )
mi n_bi n_si ze_l i st ← empty list.
for cluster i ng _cr i ter i on in list of clustering criteria do

di str i buti on ← COMPUTE_DISTRIBUTION(d at aset ,cluster i ng _cr i ter i on).
mi n_bi n_si ze_l i st ← append minimum bin size of di str i buti on among all the bins.

end for
return mi ni mum(mi n_bi n_si ze_l i st )

10
end function

function ORIGINAL_DISTRIBUTION_RESAMPLING(d at aset ,cluster i ng _cr i ter i on, f ol d_si ze)
di str i buti on ← COMPUTE_DISTRIBUTION(d at aset ,cluster i ng _cr i ter i on).
tot al_avai l able_d at a ← sum values of di str i buti on.
l i st_d at a_ f old ← empty list.
for cel l in di str i buti on do

number _d at a_ f old ← si ze(cel l )∗ f ol d_si ze
tot al_avai l able_d at a .

for f ol d_i d in range(10) do
d at a_ f old ← get number _d at a_ f old from cel l .
cel l ← remove d at a_ f old from cel l .
l i st_d at a_ f old ← append d at a_ f old .

end for
end for
return l i st_d at a_ f ol d .

end function

function BALANCED_DISTRIBUTION_RESAMPLING(d at aset ,cluster i ng _cr i ter i on, f old_si ze)
di str i buti on ← COMPUTE_DISTRIBUTION(d at aset ,cluster i ng _cr i ter i on).
if clustering_criterion = demographic then

number _d at a_ f old ← f old_si ze
number _demog r aphi c∗2

else
number _d at a_ f old ← f old_si ze

10
end if
l i st_d at a_ f old ← empty list.
for cel l in di str i buti on do

for f old_i d in range(10) do
d at a_ f old ← get number _d at a_ f old from cel l .
cel l ← remove d at a_ f old from cel l .
l i st_d at a_ f old ← append d at a_ f old .

end for
end for
return l i st_d at a_ f ol d .

end function
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C.5. Examples of correct and incorrect classifications
We give examples (annotation: 0 = non-toxic, 1 = toxic) of high-consensus data which are:

• well predicted by the model without user model (M1) but not by the model which uses the one-hot
encoded users’ model (M2):

comment annotation

added tags files help editors know whats going thanks 0
good call thanks 0

• well predicted by M2 but not M1:

comment annotation

note need member project order edit page whether edit minor per wikipedia bold et al 0
fairly certain henrik swedish thus worth exposing parents however 0

clarification zundark right checked wikipedia bugs page first bug code makes wikipedia work means line code may error small
extra space analogous simplified way trying make something bold html forgetting put end see something like words bold

instead words bold like virus code somebody deliberately wrote order infect computer damage files go around jhk
0

elected electoral jhk 0
template inuse check templates template inuse use top articles working avert speedies edit conflicts 0

• incorrectly predicted by M1 and M2:

comment annotation

really think much historic gnosticism 0

• well predicted by M1 and M2:

comment annotation

september 2010 please stop adding unreferenced controversial content biographical articles content nature could regarded
defamatory violation wikipedia policy continue blocked editing wikipedia

0

clarification zundark right checked wikipedia bugs page first bug code makes wikipedia work means line code may error small
extra space analogous simplified way trying make something bold html forgetting put end see something like words bold

instead words bold like virus code somebody deliberately wrote order infect computer damage files go around jhk
0

We give examples of low-consensus data which are:

• well predicted by the model without user model M1 but not by the OH model M2:

comment annotation

hey please stop vandalizing stop 1
please stop continue vandalize wikipedia blocked editing shared ip address make unconstructive edits consider creating

account avoid irrelevant warnings
1

warning honesty warning person like get 1
apology necessary probably dislike 1

knew better would know bullshit gets published people like try delete truth 1

• well predicted by M2 but not M1:

comment annotation

like said countless times today mulatto movement internet mulatto movement lol lack better phrase draws esteem
counterproductive denigration black people nothing else put black quotes united states mulatto black necessarily mutually

exclusive concepts go far say power self identifying mulattos hope always relation black people mulattos fail realize existence
promotes race mixing encouraging 6 8 mandingo date marry impregnate 5 3 mary sue whites matter much cozy try delink

blacks innately reject perennially frown upon sure black mulatto men would take advantage mulatto movement sleep many
white women possible white women accessible interestingly people helm mulatto movement likely turn quadroons octoroons

fascinating hierarchical paradigm followed funny imagine hexadecaroon forming quadroon movement denigrated black people
mulatto people well gotta love stuff lol

1

certainly better world service called simple negro months ago sources exist material nollen dr wright 1
fyrom live toghether ethnical point view albanians turks slavs makedonji armanji national point view fyromian macedonians

fyromians change flag another sun fyromian sun wich reprezent freedom liberty action makedonji armanji regaine official right
use ancient symbol vergina sun sun use makedonji armanji everywhere planet must tell taht still dont know somebody use

yhese sun moon another planet dont know universal symbol sun official northern greece ask karolos papulias makedon arman
used epir thessaly kavala makedonia thrakia regions live 1 5 milion makedonji armanji speak greek makedon arman nodody
planet use vergina sun makedonji armanji also called vlasi valaq cingari cobani aromani pomak maybe tommorow chinese

political interest misterjapa dont understand wy dont know cancelling every day ethimology makedonji armanji vergina sun
balkans houndred books find names officccccccciiiiiiiaaaaaaallllliiiii add bibliography someone delete every day respect wiki

principles tell mister adyjapan makedonji armânjiljii ancient macedonians romanized millenary distinguished language
romanian greeks ethnical point view truth 2 thousands years commun greeks romanians nothing masive imigrantions

explosion moscopole gramostea still continue mizerably propaganda stupid tendence assimilation still wikipedia delete native
names sincerly tell seleting action ilegal project must stop accept native names symbol go anyway add native names every day

1

trying explain neil armstrong landing moon fictitious santa claus appearing xmas 007 submarine cars dare pollute cyberspace
outrageous lies suggest otherwise deadly diseased celebrity liars like armstrong aldrin nixon telling truth young impressionable

children looked apollo wikipedia see nothing deadly mistaken rehashing late 60 hoaxes presented scientific achievements
1

dont think equally bad muslims rioting destroying property islam religion peace tolerance acts violence equally reprehensible
islam cartoons realize world watching act like muslims like undisciplined individuals

1
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• well predicted by M1 and M2:

comment annotation

bother evidently feel examples disgusting attitude towards others nothing harassment offending individual 1
april 2008 please stop continue vandalize wikipedia blocked editing ip using similar another used time vandalise page 1

vandalislisilisilism gee thanks 1
oh sorry must watch straaaangle death omid djalili mummy 1999 1

game year wolf need stop changing blood moon year wolf studio album compilation album game said many interviews album 4
tracks game thanks dont tell cite source cited shit either

0

• incorrectly predicted by M1 and M2:

comment annotation

arg shit credible 0
ok please explain page newspaper called antelope valley press notable page newspaper called av news publications cover area

los angeles county allowing stay pasted deleted content first attempt create page deleted thought might format issue copied
entire av press page template replaced text av press text av news website link thinking would resolve issue use outrage page

deleted almost posted worded better work av news asked see getting page others think people looking wiki aware media outlets
area av press sure references need bloody website perhaps could head ass attitude give example two lord god almighty bwilkins

finds acceptable question wiki getting information playing favorites much av press donate wonderous exclusivity simply see
reasonable explanation av news keeps getting deleted

1

email sent admin blocked ip permanently without explanation claimed ip going wild trying avoid scrutiny nonsense first done
anything could remotely considered going wild edint articles making badly needed edits even tried identify edits considered

objectionable made attacking statement expect others believe second certainly trying aovid scrutiny signing everyone certainly
knows ip using means lots people watching third claim ani uncivil fourth claim edit warring edit warring took place made new

edits revert one two blind reverts changes made people clearly ignoring talk page discussion putting back wanted edit
comments explaining disagreed reverts went reverted would ones edit warring revert certainly use one revert without abusive
edit warring fifth claim ani page log make edits well ok rules saying anyone sign sign edit blocked ip address use edit ip blocks

account well given justification block therefore expect take block would nice apologize flagrant violation several wikipedia
policies

1

assume good faith editor clearly intentionally causing trouble thanks waste time 1
problem mate professional registered website true story ronald ryan almost completed purrum able contribute trash lies
allegations accusations opinions views ryan case purrum infamous promotional book profits hanged man pages 221 222

confirms purrum compulsive manipulative liar fact book states discrepencies eyewitnesses evidence substancial wide ranging
fourteen eyewitnesses testified different accounts saw eyewitnesses testified seeing ryan east hodson eyewitnesses testified

seeing ryan west hodson eyewitnesses testified seeing smoke coming ryan rifle although established expert forensic ballistics
senior sergeant colin letherbarrow testified cartridges used smokeless variety eleven eyewitnesses testified saw ryan armed rifle

fourteen eyewitnesses testified hearing one single shot hodson fell ground significantly four eyewitnesses testified actually
seeing ryan fire shot contest evidence eyewitness contradictory purrum infamous book goes describe discrepencies

prosecution case eg lack scientific forensic evidence vital missing pieces evidence downward trajectory angle fatal bullet prison
officer paterson testifying fired single shot heard eyewitnesses thank good luck ongoing lies

1





D
Ethical debate related to

the computational automation of hate
speech detection frameworks

This chapter is an adapted version of the final essay written for the course UD2010 Critical Reflection on
Technology (course part of the TU Delft Honours Program), adapted to the thesis report.

Abstract
Recently, Machine Learning and the study of social Big Data have been brought together by computer sci-
entists to discover correlations and make inferences on new human-related data such as sentiment classi-
fication of comments posted on the Web, ... Among these research, we are interested here in algorithms
performing automatic classification of Web sentences into classes like hateful or not hateful, or offensive or
not offensive. Even though human workers are already performing such tasks to filter posts on social me-
dia and comments on forums, the new development of these computational systems sees many criticisms
arising. We discuss the arguments of the opponents to this technology in two steps: first the issues related
to the justifiability of the technology implementation and its possible limits are investigated, and then the
potential negative consequences of applying such a technology.We argue that this technology is not harmful
by itself, but the applications that people could find to it could be, and therefore it should be adopted only
under certain conditions that are drafted in the last section.

D.1. Introduction
In Computer Science, two fields of research have recently been brought together: Machine Learning -the
development of algorithms to automatically classify data samples-, and the study of social big data -the large
amount of social media data produced everyday by people’s interactions with the Internet and now available
to the company workers. Combining these two areas, the aim of researchers is to discover correlations in
the data and classify automatically previously unseen data, such as sentiment classification of comments
posted on the Web, recognition of objects in social media post pictures, ... One of these technologies is the
automatized classification of Web sentences into different classes related to human judgment: hateful or
not hateful, or toxic or not toxic, or offensive or not offensive (these classes have similar definitions that the
researchers do not differentiate clearly) [94]. Several studies show the desirability of detecting hate speech on
the Internet [105]. Mainly with the increasing use of the Internet and websites where comments are enabled,
the quantity of posted messages is too large for human moderators alone to filter them. Thus, it becomes
more and more important to be able to detect hateful comments automatically.

The development of this technology is very recent, but already criticized by many. First, its opponents
claim that sentence toxicity classification can not be justified mainly because the technology would not ac-
curately represent people’s opinion since several persons may have different views on one sentence. Second,
even if we consider that the technology classifies in an acceptable way, its negative consequences would out-
weigh the positive ones: it would be used to filter Web’s content and thus the accessible information would
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be biased towards certain opinions considered as morally correct by a majority of people or by the creators
of the algorithms. We argue conversely that this technology is not harmful by itself, but the applications that
people could find for it could be, and therefore it should be adopted only under certain conditions. First,
we investigate the possible objections to the technology by looking at how it is developed, after explaining
how it works. Then, we reflect on its intended purpose. Finally, we propose rules to make the technology less
controversial.

D.2. Description of the technology
The technology is a system which takes as input a sentence, and returns a judgment over the toxicity, offen-
siveness or hatefulness of the sentence (to simplify, we mention toxicity in the rest of the essay but we mean
any of these categories). Two main versions of this technology are considered. The first one is the currently
most accurate one: the output is a binary label saying whether the sample is toxic or not, or a percentage
estimating for what proportion of the population the sentence would be considered toxic. However, a newly
emerging research proposition (version 2) is to adapt these systems to each specific reader of the sentence:
instead of returning a label corresponding to the majority’s opinion, the output judgment would be different
for each reader.

In order to build current systems, it is first required to build a dataset consisting in example sentences
and their toxicity judgment or judgment percentage. Then, a mathematical classification model is designed
and implemented. This model is then trained to solve its intended task by being fed with the dataset multiple
times and adapting its parameters to it.

If the technology is adapted to each individual, the dataset contains example sentences and their cor-
responding judgments by multiple persons. Then, the model is trained by inputting the sentences, their
judgments, the identifiers of the individuals, and possibly features describing them such as their age, gen-
der, education level, ethnicity. These features are investigated to help the classification by the algorithms
because the psychology literature [32] about offensiveness and hatefulness perception declares them as ma-
jor variables in the judgments. It is hypothesized that the more properties characterizing the individuals are
available, the more accurate the algorithms would be at outputting the individuals’ judgments.

D.3. On the ethics of the system pipeline
In this section, we investigate what are the possible implementation’s aspects which could be considered
harmful by looking at each step of the technology pipeline, and reflect on whether they are avoidable.

D.3.1. On the possible breach of privacy

There are several issues with the dataset, the first one being privacy. Most researchers create their dataset
by scraping sentences on the Web from social media posts, chat histories, users’ flagged posts as undesir-
able content... Besides, certain researchers link the sentences’ users to their social media profile to collect
additional information about them like their gender, nationality, etc... Certain persons argue that storing
their data is an invasion of privacy. However, these posts and profiles are available publicly on the Internet
because the users previously decided to publish them. Therefore, it is debatable whether this is truly an in-
fringement of privacy. When creating crowdsourcing tasks to collect toxicity annotations on the sentences,
the researchers may ask the workers to give personal information such as their age, gender, ... This is some-
times considered an infringement of privacy whereas the workers are not forced to give this information.

Moreover, it depends on how the data are used. If they are made anonymous, the users are not identifi-
able, what is an additional reason not to consider it as breach of privacy. Researchers could also store the data
only for the time spent exploiting them and then delete them, so that there is no permanent trace of the users.
Finally, if the users wish to benefit from the individual-level tuned algorithms, they would be made aware of
the necessity of accessing their personal data and asked beforehand to share them, consequently the data of
the unwilling users would remain unused. If not sufficient, an additional acceptation could be required from
the social media users (in addition to the usually ignored terms of use of the social media platforms) to make
them more conscious of their public data being accessed.
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D.3.2. On the justifiability of sentence hatefulness classification
The second issue is related to the actual content of the data and its potential discriminative power. As high-
lighted in the new Machine Learning conference FAT* 1 (Fairness, Accountability, and Transparency), datasets
may contain implicit biases which turn the algorithms into discriminative systems [? ]. If the system is
adapted to each individual but these individuals’ opinions are not represented equally in the dataset, the
algorithm may perform more accurately for certain people than others, and thus it could be considered fairer
regarding specific individuals. Is this inequality an issue? The system cannot be perfect and errors may have
more or less consequences, but claiming the system itself or its creators are discriminative sounds absurd as
long as it is not intended. Besides, the more data available, the more these issues can be avoided.

Moreover, the second version of the system aims at returning outputs tuned to each individual by gener-
alizing over data describing only a group of individuals. That questions the conception of the human mind
that researchers implicitly have when designing these systems: every individual can be assimilated to a group
of representative persons in the dataset, and can be described by a few features. However, if researchers did
not make this first assumption, they would not be able to create a system serving their goal, so this is un-
avoidable. The second assumption that a group of features would enable to learn individuals’ preferences
is debatable. For example, more personal variables also have an influence in the offensiveness judgments.
Thus, only using the first group of properties can be considered discriminatory since people are seen simply
as members of specific demographics groups. A solution is to explain that the algorithms are made to classify
toxicity for categories of users instead of individual users, or to evaluate the algorithms and display warnings
about the possible inaccuracies. Moreover, if researchers manage to create a system with high accuracy, their
method would be proved legitimate, but it implies that they first have to test their assumption.

Certain persons could object there is no objective rule to define when the system is effective enough to be
used. There is no criterion to choose an accuracy threshold to reach to use the system. It is also impossible
to claim that the data contain every kind of opinion, and thus that the algorithm is evaluated against every
possible configuration because sentence toxicity perception depends on many parameters of the sentence
context -not only who judges it but also what was the aim of the person writing it, to whom it was addressed...
However, at least the most frequent opinions are represented in the dataset. If the limits and characteristics of
the dataset used are explained to the users of the algorithm, they would be aware of where errors are possible
and the limitations of the algorithm.

Finally, many claim that the decision process is not explicit, so the outputs are not verifiable and con-
sequently should not be trusted and used. However, even for human thinking not every decision can be
explained rationally, as Daniel Dennett says "We also don’t know how we take decisions". Thus this objection
does not hold, and the rational could be claimed here to be the statistics behind the system.

We presented the objections related to the practical implementation of the technology, and showed that
with certain conditions on the development and use of the technology they do not hold.

D.4. On the justification of the technology applications
After explaining the advantages to build such a technology, we tackle the opposing arguments related to its
purpose by examining the different stakeholders’ views (Internet users, websites’ companies, and researchers
and engineers who create and build the technologies).

D.4.1. On the usefulness of the technology
The advantages are directed towards the users. The first application is the filtering of human content on the
Web. Hateful speech filtering is an important task according to the regulations established in certain coun-
tries, for example in Germany hate speech was spread over the Internet to influence the elections’ outcome 2

and regulations are enforced to have companies remove these posts 3. Posts on the Internet (on forums or
social media such as Facebook) are already filtered by humans reading each post and emitting a judgment
according to criteria defined by people responsible for the application. However, facing the increasing num-
ber of Internet users, human filterers are not able anymore to process all the posts, which makes automa-

1https://fatconference.org/
2http://www.spiegel.de/international/germany/trolls-in-germany-right-wing-extremists-stir-internet-hate-

a-1166778.html
3http://www.bbc.com/news/technology-42510868

https://fatconference.org/
http://www.spiegel.de/international/germany/trolls-in-germany-right-wing-extremists-stir-internet-hate-a-1166778.html
http://www.spiegel.de/international/germany/trolls-in-germany-right-wing-extremists-stir-internet-hate-a-1166778.html
http://www.bbc.com/news/technology-42510868
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tized classification systems useful since they can be used to quickly identify the offensive posts, as Instagram
started recently 4.

Moreover, a system can be argued to provide impartial judgments since it always has the same behavior,
whereas human judgments are subjective even if the filtering criteria is made as explicit as possible -several
human judges may have different views and even one unique judge perception may vary over time. Addition-
ally, the content can be filtered based on different criteria such as differentiating content adapted to children
or to different Internet communities of readers for example with different political views.

Another similar use is to advise Internet users: when they write a post, the system can be used to warn
them whether their text may be perceived offensive and for which part of the population.

Finally, the filtering could also serve as pre-processing of Web social data for the training of further com-
putational systems. Certain systems like Microsoft chatbot Tay [82] are trained by collecting and feeding them
Internet posts. If the content is not filtered, the systems may return undesirable outputs such as Tay which
became racist in less than one day.

Thus, the algorithms have many advantages but one could argue they cannot be totally accurate and
might not be useful. We object that they can be designed to make more errors on false negatives or false pos-
itives. When tuned to minimize the false negatives, the errors are not harmful: if too few posts are removed,
the users can simply ignore the toxic comments. When tuned to minimize the false positives, human judges
could be required to read and filter only the positive outputs of the algorithm, what would considerably re-
duce their amount of work and enable not to remove non-toxic statements.

D.4.2. On the criticisms of the technology applications
Now that we have stated the foreseen uses of the technology, we examine the criticisms about the purpose
of the algorithm. We consider a system which would work perfectly in order not to confuse with implemen-
tation issues. Although data filtering appears to be an advantage, its morality merits to be investigated. For
websites’ users, the reduced access to information and the selection of the accessible information are two
main issues, even though human filtering brings the same debate.

A first question is whether abusive content should be filtered? Abusive speech has been used constantly
for example in political campaigns far before the Internet was invented, but has not always been forbidden.
So, why are people suddenly interested in filtering it on the Web? Possibly, because of their anonymity on the
Web people are more carefree and abusive what hinders peaceful use of the Web as a mean of information
access and communication, and that would legitimate setting up barriers to prevent abuse. However, should
freedom of expression be limited? For certain persons, netizens should be able to express themselves with-
out using abusive language and although there is freedom of expression, people are free up until a certain
extent, and therefore should not be offensive. That is what supports the laws against racist and negationist
statements in the public debate in several countries and on the Web with the Council of Europe cybercrime
convention. For others, freedom of expression is more important than offending others and therefore these
laws are not justified and no comment should be deleted -these persons could simply not use the filter. From
the point of view of the persons posting the data, removing their content is also equal to negating their free-
dom of expression if we do not believe the laws are justified. Having the polemic statements available on the
websites with the possibility for users to hide them could be a solution: the posts would remain there, but
would only not be read by the people who decide not to have them displayed.

Second, filtering the available content on the Internet could have unwanted consequences. It may de-
crease the amount of information and opinions Internet users are exposed to, reducing their reflection and
producing one unique way of thinking (filter bubble phenomenon). People would become more close-
minded. However, this highly depends on the exact filtering criterion: if only comments using abusive lan-
guage, hateful speech are filtered, then the Internet users who are able to expose their ideas without dimin-
ishing others -even though their ideas go against the majority ideas- would be kept. Consequently, the only
issue is when the posts both give information and use hateful speech, there only the use of the algorithm is
questionable and comes back to the question of free expression.

Additionally, information selection might lead to a potential hidden censorship: the algorithms’ concep-
tors or their influencers (companies or possibly other stakeholders) could use specific filtering criteria which

4https://instagram-press.com/blog/2018/05/01/protecting-our-community-from-bullying-comments-2/

https://instagram-press.com/blog/2018/05/01/protecting-our-community-from-bullying-comments-2/
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would direct users’ opinions toward certain ideologies; but this is already the case with other media like tele-
vision, radio, ... Moreover, if the algorithm’s criteria are made public, there should not be such a danger.

We saw that the filter bubble and censorship resulting from misusing the technology are the two main
dangers opposed to its development and use, along a possible breach of free expression. However, we con-
tradicted these arguments by proposing to disclose the technology implementation.

D.5. Possible regulations to make the use of the system more controlled
From the previous sections, it is concluded that the technology itself would not be harmful to its users as long
as some rules would be set up to control its inaccuracies and applications. We now explain these regulations.

The doubts concerning the justifiability of sentence toxicity classification and the possible censorship
deviation are solvable by making the algorithm pipeline and performances transparent, for people to have
the possibility to become aware of and alert about the limits and misuse of the technology they use. Shifting
the choice of the filtering criterion from the companies to organizations, by making the criterion universal,
would enable to make the algorithms unattainable by possible influencers.

Second, we identified issues concerning the morality of Web content filtering, especially if the system
was used over the whole Internet by default -what would be a large scale compared to only implementing it
on some websites. We suggest that instead of automatically filtering posts, a mask should be proposed that
users could choose to activate, so that they become involved in the decision process and decide consciously
to what information they are exposed. For example, it could be used for children but not for their parents if
they consider that children should not learn abusive language. Besides, in order not to have users forget the
filter and become less critical, a warning should be displayed to remind them about it.

Laws currently require companies to remove hateful content within a few days but certain persons are
against this for free speech reasons. Thus the rules could possibly be alleviated and the filtering could be
made mandatory only for certain people characterized as “sensitive” such as children, and available as a
choice for the others. However the question of defining these sensitive people would be controversial.

Finally, we explained previously that the perception of toxicity is subjective. Having websites apply the
algorithm automatically could tend toward a general-judging system not adapted to each individual pref-
erences and thus would ignore the minority’s opinions when filtering the data. Thus we believe that if the
system was not activated by the application providers but installed by each user who would choose their own
filtering parameters, then it could become inclusive of the different opinions.

D.6. Conclusion
In conclusion, although automatic filtering of toxic content on the Web is a useful technology considering
the increasing number of possibly abusive Internet users, it is contested by many because it does not seem
justifiable to develop an individually-tuned system from general data and it could have several negative con-
sequences. However, we showed that if they want to create such a technology, researchers have no other
possibility than to test their algorithm design but also clearly make the users aware of the limitations. More-
over, we argued that the objections to the technology’s adoption do not hold if certain regulations are set up
to make users employ it consciously.
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Abstract. Training machine learning (ML) models for natural language
processing usually requires large amount of data, often acquired through
crowdsourcing. The way this data is collected and aggregated can have
an effect on the outputs of the trained model such as ignoring the labels
which differ from the majority. In this paper we investigate how label
aggregation can bias the ML results towards certain data samples and
propose a methodology to highlight and mitigate this bias. Although our
work is applicable to any kind of label aggregation for data subject to
multiple interpretations, we focus on the effects of the bias introduced by
majority voting on toxicity prediction over sentences. Our preliminary
results point out that we can mitigate the majority-bias and get increased
prediction accuracy for the minority opinions if we take into account the
different labels from annotators when training adapted models, rather
than rely on the aggregated labels.

Keywords: dataset bias · Machine Learning fairness · crowdsourcing ·
annotation aggregation.

1 Introduction

When using crowdsourcing to gather training data for Machine Learning (ML)
algorithms, several workers work with the same input samples and the annota-
tions are aggregated into a unique one like the majority vote (MV) to ensure
its correctness (elimination of annotation mistakes and spammers mainly). Al-
though this data collection method is designed to get high-quality data, we ex-
pect that certain tasks involving subjectivity such as image aesthetic prediction,
hate speech detection, detection of violent video segments, sentence sentiment
analysis, cannot be tackled this way: samples should not be described with unique
labels only since they are interpretable differently by different persons.

The use of hate/toxic speech has increased with the growth of the Inter-
net [5]. Predicting whether a sentence is toxic is highly subjective because of its
multitude of possible interpretations. The sentence ”I agree with that and the
fact that the article needs cleaning. Some of these paragraphs [..] seem like they
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were written by 5 year olds.” is judged negative or positive by different readers,
but this perceptions’ diversity is ignored when selecting one unique label as done
in recent research [4]. [3] studied the existence of identity term biases resulting
from the imbalance of a toxicity dataset content, we show with the example
of MV-aggregation that crowdsourcing processing methods on the same dataset
also create an algorithmic bias here towards the majority opinion. When annota-
tions differ but are all valid for certain annotators, aggregation loses information
and leads to decrease of accuracy and unfairness in ML results, thus we hypoth-
esize that the bias can be mitigated by using disaggregated data. In this study,
we first exhibit the presence of the majority-bias and its consequences, then we
propose a methodology to expose and counter its algorithmic effects.

2 Majority-biased dataset and consequences

We show on the toxicity dataset [6] that in usual crowdsourcing aggregations of
annotations, certain worker contributions are ignored for the majority and that
it affects the fairness of ML algorithms’ results. The dataset consists of 159686
Wikipedia page comments for which 10 annotations per sample are available.
A large number of annotators (4301) that we have their personal information
rate the phrases with 5 labels of toxicity ranging from -2 (very toxic) to 2 (very
healthy) with 0 being neutral.

Subjectivities in the dataset. For each worker, we compute the aver-
age disagreement rate (ADR) with the ground truth (percentage of annotations
different from the MV here), and plot the distribution over the dataset after
removing the annotations of the lowest quality workers (spammers) (fig. 1). The
quality score for each worker (WQS) is computed with the CrowdTruth frame-
work [1] using binary labels ([-2;-1]:toxic, [0;2]:non-toxic), along a unit quality
score (UQS) to represent the clarity of each sentence. Without removing low-
quality workers, the proportion of high agreement is high because most spammers
constantly use one positive label and the dataset is unbalanced with more sam-
ples with non-toxic MV. The more possible spammers are removed, the more
the disagreement increases until the distributions stabilize. Only 0.09% of the
workers always agree with the MV for 50 spammers removed: MV-aggregation
is not representative of most individuals but only of a sentence-level common
opinion.

Algorithmic effect of the bias. We consider the task of predicting binary
labels. Training traditional algorithms to predict the MV, annotations of only
maximum 0.09% of annotators would be entirely correct: the majority-bias is not
consistent with the worker’s individual opinions. We evaluate traditional models
(sec. 3) trained and tested on aggregated and disaggregated labels (table 1). In
both cases accuracy is higher when measured on aggregated data, what shows
that classical input data’s treatment makes usual models’ predictions biased
towards one type of opinion, here the majority opinion, instead of representing
each subjectivity.
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Fig. 1. Normalized distribution comparison of the ADR with the MV with and without
low quality worker filtering.

Table 1. Accuracy performances of the model on the ambiguity balanced dataset.

agg. testing disagg. testing

agg. training 0.76 0.70
disagg. training 0.77 0.71

disagg. training with user 0.77 0.70

3 Method to measure and mitigate the bias

We claim that a fairer algorithm should return different outputs for a same
sample depending on its reader. Here, we propose measures of the majority-
bias’ algorithmic effect and a method to counter its unfairness.

Bias measure. Global metrics are usually used to optimize the algorithms’
parameters and evaluate them. However, they do not inform on the bias’ ef-
fects since most samples’ labels have a high-agreement: the slight improvement
when training on disaggregated data hints only lightly at label disaggregation
(table 1, fig. 2). To identify the effects, we propose to measure sentence-level
and worker-level accuracies on the annotations spread in the following bins: we
divide the sentences along their ambiguity score (AS) (percentage of agreement
in annotations) or UQS, the workers with their ADR, WQS or demographics
categories; and also plot histograms of the per-user and per-sentence errors to
identify potential unfairness among all workers or sentences.

Bias mitigation: ML. To account for the full range of valid opinions, we
propose to modify the inputs to the ML models. After removing low-quality
workers, instead of the aggregated labels we feed them with the annotations
augmented with the available worker demographics (age, gender, education, with
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a continuous or one-hot encoded representation) that psychology literature [2]
gives as the most influencing factors of offensiveness perception (along with
ethnicity not available here). Each (sentence, demographics, annotation) tuple is
considered as one data sample. We employ the Logistic Regression (LR) classifier,
and encode sentences with term frequency-inverse document frequency (tf-idf).
The optimal hyperparameters for each set-up are chosen by performing a grid
search.

Bias mitigation: dataset balancing. We define 4 data set-ups to help
the algorithms learn the individual annotations. Sentence AS and MV-toxicity
are computed, and we resample the dataset following the original distribution or
balancing the distribution on these 2 criteria, to obtain a dataset whose majority-
bias is decreased by equally representing samples with high and low agreement
between workers. We also resample the annotations along the MV-toxicity and
demographics categories (removing the least frequent ones) into one dataset
following the distributions and a balanced one, to foster performance fairness
in-between populations.

Results. Binned metrics like the user-level ADR-binned accuracy (fig. 2 with
bins along the y-axis) enable to show that models are more suited to workers
who agree with the MV (bottom of the y-axis), and highlight the benefit of using
disaggregated data with adapted ML models. On the AS-balanced dataset (left
part of the x-axis), the user representation increases accuracy for workers with
a high disagreement with the majority over using aggregated data or no user-
model. The resampling choice also helps understanding and mitigating bias’
effects: balancing on demographics neither clearly shows the performance gap
between minority and high-ADR workers nor improves accuracy with the user
representation, contrary to the AS dataset in which MV-consensus’ presence is
reduced.

Fig. 2. Average and ADR-binned accuracies for two resamplings of the dataset.
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4 Conclusion and Discussion

Disaggregating the annotations decreases the majority-bias’ effects with adapted
ML models’ inputs and dataset resamplings. Binning the evaluation metrics en-
ables to understand and verify the existence of these effects. We only reported
results using the LR classifier but we now investigate adaptations of Deep Learn-
ing algorithm’s architectures which are better suited to the large dataset (10
times more annotations than labels) and to the size of the ML inputs.
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